Skip to content

back to Claude Sonnet 3.5 - Fill-in summary

Claude Sonnet 3.5 - Fill-in: seaborn

Pytest Summary for test tests

status count
failed 214
passed 29
total 243
collected 243

Failed pytests:

test_properties.py::TestColor::test_nominal_default_palette_large

test_properties.py::TestColor::test_nominal_default_palette_large
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_faceted_fill

test_moves.py::TestDodge::test_faceted_fill
[gw2] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestNorm::test_default_no_groups[x]

test_moves.py::TestNorm::test_default_no_groups[x]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_default

test_moves.py::TestDodge::test_default
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_groupby.py::test_at_least_one_grouping_variable_required

test_groupby.py::test_at_least_one_grouping_variable_required
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestNorm::test_default_no_groups[y]

test_moves.py::TestNorm::test_default_no_groups[y]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_nominal_named_palette

test_properties.py::TestColor::test_nominal_named_palette
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestNorm::test_default_groups[x]

test_moves.py::TestNorm::test_default_groups[x]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_groupby.py::test_agg_one_grouper

test_groupby.py::test_agg_one_grouper
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_groupby.py::test_agg_two_groupers

test_groupby.py::test_agg_two_groupers
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestNorm::test_default_groups[y]

test_moves.py::TestNorm::test_default_groups[y]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_nominal_list_palette

test_properties.py::TestColor::test_nominal_list_palette
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_groupby.py::test_agg_two_groupers_ordered

test_groupby.py::test_agg_two_groupers_ordered
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_groupby.py::test_apply_no_grouper

test_groupby.py::test_apply_no_grouper
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestNorm::test_sum

test_moves.py::TestNorm::test_sum
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_nominal_dict_palette

test_properties.py::TestColor::test_nominal_dict_palette
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestNorm::test_where

test_moves.py::TestNorm::test_where
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_nominal_dict_with_missing_keys

test_properties.py::TestColor::test_nominal_dict_with_missing_keys
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_nominal_list_too_short

test_properties.py::TestColor::test_nominal_list_too_short
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestNorm::test_percent

test_moves.py::TestNorm::test_percent
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_groupby.py::test_apply_one_grouper

test_groupby.py::test_apply_one_grouper
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_groupby.py::test_apply_mutate_columns

test_groupby.py::test_apply_mutate_columns
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestCoordinate::test_bad_scale_arg_str

test_properties.py::TestCoordinate::test_bad_scale_arg_str
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_groupby.py::test_apply_replace_columns

test_groupby.py::test_apply_replace_columns
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_nominal_list_too_long

test_properties.py::TestColor::test_nominal_list_too_long
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestCoordinate::test_bad_scale_arg_type

test_properties.py::TestCoordinate::test_bad_scale_arg_type
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_inference[viridis-bool-Boolean]

test_properties.py::TestColor::test_inference[viridis-bool-Boolean]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_nominal_default_palette

test_properties.py::TestColor::test_nominal_default_palette
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_inference[muted-num-Nominal]

test_properties.py::TestColor::test_inference[muted-num-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_continuous_default_palette

test_properties.py::TestColor::test_continuous_default_palette
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_inference[values4-num-Nominal]

test_properties.py::TestColor::test_inference[values4-num-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_fill

test_moves.py::TestDodge::test_fill
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_faceted_drop

test_moves.py::TestDodge::test_faceted_drop
[gw2] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_default[num]

test_properties.py::TestMarker::test_default[num]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_continuous_named_palette

test_properties.py::TestColor::test_continuous_named_palette
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_inference[values5-num-Nominal]

test_properties.py::TestColor::test_inference[values5-num-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_default[bool]

test_properties.py::TestMarker::test_default[bool]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_continuous_tuple_palette

test_properties.py::TestColor::test_continuous_tuple_palette
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_inference[values6-num-Continuous]

test_properties.py::TestColor::test_inference[values6-num-Continuous]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_inference_list[cat]

test_properties.py::TestMarker::test_inference_list[cat]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_inference_list[num]

test_properties.py::TestMarker::test_inference_list[num]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_inference[values7-cat-Nominal]

test_properties.py::TestColor::test_inference[values7-cat-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_inference_list[bool]

test_properties.py::TestMarker::test_inference_list[bool]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_inference[values8-bool-Boolean]

test_properties.py::TestColor::test_inference[values8-bool-Boolean]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_continuous_callable_palette

test_properties.py::TestColor::test_continuous_callable_palette
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_inference_dict[cat]

test_properties.py::TestMarker::test_inference_dict[cat]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_inference[values9-num-Continuous]

test_properties.py::TestColor::test_inference[values9-num-Continuous]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_continuous_missing

test_properties.py::TestColor::test_continuous_missing
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_standardization

test_properties.py::TestColor::test_standardization
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_inference_dict[num]

test_properties.py::TestMarker::test_inference_dict[num]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_mapping_default[cat]

test_properties.py::TestMarker::test_mapping_default[cat]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_default[num]

test_properties.py::TestLineStyle::test_default[num]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_inference_dict[bool]

test_properties.py::TestMarker::test_inference_dict[bool]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_mapping_default[num]

test_properties.py::TestMarker::test_mapping_default[num]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_default[bool]

test_properties.py::TestLineStyle::test_default[bool]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_dict_missing

test_properties.py::TestMarker::test_dict_missing
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_inference_list[cat]

test_properties.py::TestLineStyle::test_inference_list[cat]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_mapping_from_list[cat]

test_properties.py::TestMarker::test_mapping_from_list[cat]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_inference_dict[bool]

test_properties.py::TestLineStyle::test_inference_dict[bool]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_mapping_from_list[num]

test_properties.py::TestMarker::test_mapping_from_list[num]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_dict_missing

test_properties.py::TestLineStyle::test_dict_missing
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_mapping_from_dict[cat]

test_properties.py::TestMarker::test_mapping_from_dict[cat]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_mapping_from_dict[num]

test_properties.py::TestMarker::test_mapping_from_dict[num]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_mapping_default[cat]

test_properties.py::TestLineStyle::test_mapping_default[cat]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_inference_list[num]

test_properties.py::TestLineStyle::test_inference_list[num]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_mapping_with_null_value

test_properties.py::TestMarker::test_mapping_with_null_value
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_unique_default_large_n

test_properties.py::TestMarker::test_unique_default_large_n
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_inference_list[bool]

test_properties.py::TestLineStyle::test_inference_list[bool]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_mapping_default[num]

test_properties.py::TestLineStyle::test_mapping_default[num]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_drop

test_moves.py::TestDodge::test_drop
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_inference_dict[cat]

test_properties.py::TestLineStyle::test_inference_dict[cat]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_orient

test_moves.py::TestDodge::test_orient
[gw2] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_inference_dict[num]

test_properties.py::TestLineStyle::test_inference_dict[num]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_mapping_from_list[cat]

test_properties.py::TestLineStyle::test_mapping_from_list[cat]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_mapping_with_null_value

test_properties.py::TestLineStyle::test_mapping_with_null_value
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_mapping_from_list[num]

test_properties.py::TestLineStyle::test_mapping_from_list[num]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_unique_default_large_n

test_properties.py::TestLineStyle::test_unique_default_large_n
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_mapping_from_dict[cat]

test_properties.py::TestLineStyle::test_mapping_from_dict[cat]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_bad_scale_values

test_properties.py::TestLineStyle::test_bad_scale_values
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_bad_type

test_properties.py::TestLineStyle::test_bad_type
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_bad_style

test_properties.py::TestLineStyle::test_bad_style
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_mapping_from_dict[num]

test_properties.py::TestLineStyle::test_mapping_from_dict[num]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineStyle::test_bad_dashes

test_properties.py::TestLineStyle::test_bad_dashes
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_inference_dict[bool]

test_properties.py::TestFill::test_inference_dict[bool]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestMarker::test_bad_scale_values

test_properties.py::TestMarker::test_bad_scale_values
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_values_error

test_properties.py::TestFill::test_values_error
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_mapping_categorical_data

test_properties.py::TestFill::test_mapping_categorical_data
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_default[num]

test_properties.py::TestFill::test_default[num]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_default[bool-Boolean]

test_properties.py::TestAlpha::test_default[bool-Boolean]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_mapping_numeric_data

test_properties.py::TestFill::test_mapping_numeric_data
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_default[bool]

test_properties.py::TestFill::test_default[bool]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_inference[arg0-cat-Nominal]

test_properties.py::TestAlpha::test_inference[arg0-cat-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_inference_list[cat]

test_properties.py::TestFill::test_inference_list[cat]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_mapping_list

test_properties.py::TestFill::test_mapping_list
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_inference_list[num]

test_properties.py::TestFill::test_inference_list[num]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_inference[arg1-num-Continuous]

test_properties.py::TestAlpha::test_inference[arg1-num-Continuous]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_mapping_truthy_list

test_properties.py::TestFill::test_mapping_truthy_list
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_inference_list[bool]

test_properties.py::TestFill::test_inference_list[bool]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_mapping_dict

test_properties.py::TestFill::test_mapping_dict
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_inference[arg2-bool-Boolean]

test_properties.py::TestAlpha::test_inference[arg2-bool-Boolean]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_cycle_warning

test_properties.py::TestFill::test_cycle_warning
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_inference_dict[cat]

test_properties.py::TestFill::test_inference_dict[cat]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_gap

test_moves.py::TestDodge::test_gap
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_inference[arg8-bool-Boolean]

test_properties.py::TestAlpha::test_inference[arg8-bool-Boolean]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_inference[arg3-cat-Nominal]

test_properties.py::TestAlpha::test_inference[arg3-cat-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestFill::test_inference_dict[num]

test_properties.py::TestFill::test_inference_dict[num]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_single_semantic[grp2]

test_moves.py::TestDodge::test_single_semantic[grp2]
[gw2] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_mapped_interval_numeric

test_properties.py::TestAlpha::test_mapped_interval_numeric
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_default[bool-Boolean]

test_properties.py::TestLineWidth::test_default[bool-Boolean]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_inference[arg4-num-Nominal]

test_properties.py::TestAlpha::test_inference[arg4-num-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_inference[arg0-cat-Nominal]

test_properties.py::TestLineWidth::test_inference[arg0-cat-Nominal]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_mapped_interval_categorical

test_properties.py::TestAlpha::test_mapped_interval_categorical
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_inference[arg5-bool-Boolean]

test_properties.py::TestAlpha::test_inference[arg5-bool-Boolean]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_bad_scale_values_numeric_data

test_properties.py::TestAlpha::test_bad_scale_values_numeric_data
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_inference[arg1-num-Continuous]

test_properties.py::TestLineWidth::test_inference[arg1-num-Continuous]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_inference[arg6-cat-Nominal]

test_properties.py::TestAlpha::test_inference[arg6-cat-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_bad_scale_values_categorical_data

test_properties.py::TestAlpha::test_bad_scale_values_categorical_data
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_inference[arg2-bool-Boolean]

test_properties.py::TestLineWidth::test_inference[arg2-bool-Boolean]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_mapped_interval_numeric

test_properties.py::TestLineWidth::test_mapped_interval_numeric
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestAlpha::test_inference[arg7-num-Nominal]

test_properties.py::TestAlpha::test_inference[arg7-num-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_mapped_interval_categorical

test_properties.py::TestLineWidth::test_mapped_interval_categorical
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_inference[arg3-cat-Nominal]

test_properties.py::TestLineWidth::test_inference[arg3-cat-Nominal]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_inference[arg4-num-Nominal]

test_properties.py::TestLineWidth::test_inference[arg4-num-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_bad_scale_values_numeric_data

test_properties.py::TestLineWidth::test_bad_scale_values_numeric_data
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_inference[arg5-bool-Boolean]

test_properties.py::TestLineWidth::test_inference[arg5-bool-Boolean]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_bad_scale_values_categorical_data

test_properties.py::TestLineWidth::test_bad_scale_values_categorical_data
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_default[bool-Boolean]

test_properties.py::TestEdgeWidth::test_default[bool-Boolean]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_rcparam_default

test_properties.py::TestLineWidth::test_rcparam_default
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_inference[arg0-cat-Nominal]

test_properties.py::TestEdgeWidth::test_inference[arg0-cat-Nominal]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_inference[arg6-cat-Nominal]

test_properties.py::TestLineWidth::test_inference[arg6-cat-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_inference[arg2-bool-Boolean]

test_properties.py::TestEdgeWidth::test_inference[arg2-bool-Boolean]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_inference[arg1-num-Continuous]

test_properties.py::TestEdgeWidth::test_inference[arg1-num-Continuous]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_inference[arg3-cat-Nominal]

test_properties.py::TestEdgeWidth::test_inference[arg3-cat-Nominal]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_inference[arg7-num-Nominal]

test_properties.py::TestLineWidth::test_inference[arg7-num-Nominal]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_inference[arg6-cat-Nominal]

test_properties.py::TestEdgeWidth::test_inference[arg6-cat-Nominal]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_inference[arg4-num-Nominal]

test_properties.py::TestEdgeWidth::test_inference[arg4-num-Nominal]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestLineWidth::test_inference[arg8-bool-Boolean]

test_properties.py::TestLineWidth::test_inference[arg8-bool-Boolean]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_inference[arg7-num-Nominal]

test_properties.py::TestEdgeWidth::test_inference[arg7-num-Nominal]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_inference[arg5-bool-Boolean]

test_properties.py::TestEdgeWidth::test_inference[arg5-bool-Boolean]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_mapped_interval_categorical

test_properties.py::TestEdgeWidth::test_mapped_interval_categorical
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_inference[arg8-bool-Boolean]

test_properties.py::TestEdgeWidth::test_inference[arg8-bool-Boolean]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_bad_scale_values_numeric_data

test_properties.py::TestEdgeWidth::test_bad_scale_values_numeric_data
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_default[bool-Boolean]

test_properties.py::TestPointSize::test_default[bool-Boolean]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_bad_scale_values_categorical_data

test_properties.py::TestEdgeWidth::test_bad_scale_values_categorical_data
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_widths_default

test_moves.py::TestDodge::test_widths_default
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_mapped_interval_numeric

test_properties.py::TestEdgeWidth::test_mapped_interval_numeric
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_inference[arg0-cat-Nominal]

test_properties.py::TestPointSize::test_inference[arg0-cat-Nominal]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestEdgeWidth::test_rcparam_default

test_properties.py::TestEdgeWidth::test_rcparam_default
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_inference[arg8-bool-Boolean]

test_properties.py::TestPointSize::test_inference[arg8-bool-Boolean]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_inference[arg1-num-Continuous]

test_properties.py::TestPointSize::test_inference[arg1-num-Continuous]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_inference[arg5-bool-Boolean]

test_properties.py::TestPointSize::test_inference[arg5-bool-Boolean]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_mapped_interval_numeric

test_properties.py::TestPointSize::test_mapped_interval_numeric
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_single_semantic[grp3]

test_moves.py::TestDodge::test_single_semantic[grp3]
[gw2] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_inference[arg6-cat-Nominal]

test_properties.py::TestPointSize::test_inference[arg6-cat-Nominal]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_inference[arg2-bool-Boolean]

test_properties.py::TestPointSize::test_inference[arg2-bool-Boolean]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_mapped_interval_categorical

test_properties.py::TestPointSize::test_mapped_interval_categorical
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_inference[arg7-num-Nominal]

test_properties.py::TestPointSize::test_inference[arg7-num-Nominal]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_inference[arg3-cat-Nominal]

test_properties.py::TestPointSize::test_inference[arg3-cat-Nominal]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_bad_scale_values_numeric_data

test_properties.py::TestPointSize::test_bad_scale_values_numeric_data
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_bad_scale_values_categorical_data

test_properties.py::TestPointSize::test_bad_scale_values_categorical_data
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_areal_scaling_categorical

test_properties.py::TestPointSize::test_areal_scaling_categorical
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_inference[arg4-num-Nominal]

test_properties.py::TestPointSize::test_inference[arg4-num-Nominal]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_rules.py::test_categorical_order

test_rules.py::test_categorical_order
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_rules.py::test_variable_type

test_rules.py::test_variable_type
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestPointSize::test_areal_scaling_numeric

test_properties.py::TestPointSize::test_areal_scaling_numeric
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSpecificationChecks::test_both_facets_and_wrap

test_subplots.py::TestSpecificationChecks::test_both_facets_and_wrap
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSpecificationChecks::test_wrapped_columns_and_y_pairing

test_subplots.py::TestSpecificationChecks::test_wrapped_columns_and_y_pairing
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_single_subplot

test_subplots.py::TestSubplotSpec::test_single_subplot
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSpecificationChecks::test_wrapped_x_pairing_and_facetd_rows

test_subplots.py::TestSpecificationChecks::test_wrapped_x_pairing_and_facetd_rows
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSpecificationChecks::test_cross_xy_pairing_and_wrap

test_subplots.py::TestSpecificationChecks::test_cross_xy_pairing_and_wrap
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_single_facet

test_subplots.py::TestSubplotSpec::test_single_facet
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_two_facets

test_subplots.py::TestSubplotSpec::test_two_facets
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSpecificationChecks::test_col_facets_and_x_pairing

test_subplots.py::TestSpecificationChecks::test_col_facets_and_x_pairing
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_col_facet_wrapped

test_subplots.py::TestSubplotSpec::test_col_facet_wrapped
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_row_facet_wrapped

test_subplots.py::TestSubplotSpec::test_row_facet_wrapped
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_x_paired

test_subplots.py::TestSubplotSpec::test_x_paired
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_col_facet_wrapped_single_row

test_subplots.py::TestSubplotSpec::test_col_facet_wrapped_single_row
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_x_and_y_paired

test_subplots.py::TestSubplotSpec::test_x_and_y_paired
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_y_paired

test_subplots.py::TestSubplotSpec::test_y_paired
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_y_paired_and_wrapped

test_subplots.py::TestSubplotSpec::test_y_paired_and_wrapped
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_x_paired_and_wrapped

test_subplots.py::TestSubplotSpec::test_x_paired_and_wrapped
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_y_paired_and_wrapped_single_row

test_subplots.py::TestSubplotSpec::test_y_paired_and_wrapped_single_row
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_col_faceted_y_paired

test_subplots.py::TestSubplotSpec::test_col_faceted_y_paired
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_row_faceted_x_paired

test_subplots.py::TestSubplotSpec::test_row_faceted_x_paired
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_x_any_y_paired_non_cross

test_subplots.py::TestSubplotSpec::test_x_any_y_paired_non_cross
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotSpec::test_x_any_y_paired_non_cross_wrapped

test_subplots.py::TestSubplotSpec::test_x_any_y_paired_non_cross_wrapped
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_single_facet_dim[row]

test_subplots.py::TestSubplotElements::test_single_facet_dim[row]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_single_subplot

test_subplots.py::TestSubplotElements::test_single_subplot
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_single_facet_dim[col]

test_subplots.py::TestSubplotElements::test_single_facet_dim[col]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_single_facet_dim_wrapped[col]

test_subplots.py::TestSubplotElements::test_single_facet_dim_wrapped[col]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_both_facet_dims

test_subplots.py::TestSubplotElements::test_both_facet_dims
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_single_facet_dim_wrapped[row]

test_subplots.py::TestSubplotElements::test_single_facet_dim_wrapped[row]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_single_paired_var[x]

test_subplots.py::TestSubplotElements::test_single_paired_var[x]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_single_paired_var[y]

test_subplots.py::TestSubplotElements::test_single_paired_var[y]
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_single_paired_var_wrapped[x]

test_subplots.py::TestSubplotElements::test_single_paired_var_wrapped[x]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_single_paired_var_wrapped[y]

test_subplots.py::TestSubplotElements::test_single_paired_var_wrapped[y]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_both_paired_non_cross

test_subplots.py::TestSubplotElements::test_both_paired_non_cross
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_both_paired_variables

test_subplots.py::TestSubplotElements::test_both_paired_variables
[gw3] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_one_facet_one_paired[col-y]

test_subplots.py::TestSubplotElements::test_one_facet_one_paired[col-y]
[gw4] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_subplots.py::TestSubplotElements::test_one_facet_one_paired[row-x]

test_subplots.py::TestSubplotElements::test_one_facet_one_paired[row-x]
[gw1] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_widths_fill

test_moves.py::TestDodge::test_widths_fill
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_two_semantics

test_moves.py::TestDodge::test_two_semantics
[gw2] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_widths_drop

test_moves.py::TestDodge::test_widths_drop
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestStack::test_basic

test_moves.py::TestStack::test_basic
[gw2] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestStack::test_faceted

test_moves.py::TestStack::test_faceted
[gw2] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestStack::test_misssing_data

test_moves.py::TestStack::test_misssing_data
[gw2] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestStack::test_baseline_homogeneity_check

test_moves.py::TestStack::test_baseline_homogeneity_check
[gw2] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_moves.py::TestDodge::test_faceted_default

test_moves.py::TestDodge::test_faceted_default
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_bad_scale_values_continuous

test_properties.py::TestColor::test_bad_scale_values_continuous
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_bad_scale_values_nominal

test_properties.py::TestColor::test_bad_scale_values_nominal
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_bad_inference_arg

test_properties.py::TestColor::test_bad_inference_arg
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_default[bool-Boolean]

test_properties.py::TestColor::test_default[bool-Boolean]
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_inference[viridis-cat-Nominal]

test_properties.py::TestColor::test_inference[viridis-cat-Nominal]
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

test_properties.py::TestColor::test_inference[viridis-num-Continuous]

test_properties.py::TestColor::test_inference[viridis-num-Continuous]
[gw0] linux -- Python 3.12.6 /testbed/.venv/bin/python3

Patch diff

diff --git a/seaborn/_base.py b/seaborn/_base.py
index d7a46b61..98b73a20 100644
--- a/seaborn/_base.py
+++ b/seaborn/_base.py
@@ -25,11 +25,19 @@ class SemanticMapping:

     def _check_list_length(self, levels, values, variable):
         """Input check when values are provided as a list."""
-        pass
+        if len(values) != len(levels):
+            raise ValueError(f"The {variable} list has {len(values)} values,"
+                             f" but there are {len(levels)} {variable} levels")

     def _lookup_single(self, key):
-        """Apply the mapping to a single data value."""
-        pass
+        """Get the size for a single value, using norm to interpolate."""
+        if self.map_type == "numeric":
+            if self.norm is not None:
+                return self.size_range[0] + self.norm(key) * (self.size_range[1] - self.size_range[0])
+            else:
+                return self.lookup_table[key]
+        else:
+            return self.lookup_table[key]

     def __call__(self, key, *args, **kwargs):
         """Get the attribute(s) values for the data key."""
@@ -93,19 +101,55 @@ class HueMapping(SemanticMapping):

     def _lookup_single(self, key):
         """Get the color for a single value, using colormap to interpolate."""
-        pass
+        if self.map_type == "numeric":
+            if self.norm is not None:
+                normed = self.norm(key)
+                return self.cmap(normed)
+            else:
+                return self.lookup_table[key]
+        else:
+            return self.lookup_table[key]

     def infer_map_type(self, palette, norm, input_format, var_type):
         """Determine how to implement the mapping."""
-        pass
+        if isinstance(palette, dict):
+            return "categorical"
+        elif norm is not None:
+            return "numeric"
+        elif var_type == "numeric":
+            return "numeric"
+        elif isinstance(palette, str) and palette in QUAL_PALETTES:
+            return "categorical"
+        else:
+            return "categorical"

     def categorical_mapping(self, data, palette, order):
         """Determine colors when the hue mapping is categorical."""
-        pass
+        levels = categorical_order(data, order)
+        n_colors = len(levels)
+
+        if isinstance(palette, dict):
+            palette = [palette[k] for k in levels]
+        else:
+            palette = color_palette(palette, n_colors)
+
+        palette = [desaturate(c, self.saturation) for c in palette]
+        lookup_table = dict(zip(levels, palette))
+
+        return levels, lookup_table

     def numeric_mapping(self, data, palette, norm):
         """Determine colors when the hue variable is quantitative."""
-        pass
+        levels = remove_na(data).unique()
+        if norm is None:
+            norm = mpl.colors.Normalize()
+        if isinstance(palette, str):
+            cmap = mpl.cm.get_cmap(palette)
+        else:
+            cmap = mpl.colors.ListedColormap(palette)
+        
+        lookup_table = {l: cmap(norm(l)) for l in levels}
+        return levels, lookup_table, norm, cmap


 class SizeMapping(SemanticMapping):
@@ -189,11 +233,32 @@ class StyleMapping(SemanticMapping):

     def _lookup_single(self, key, attr=None):
         """Get attribute(s) for a given data point."""
-        pass
+        if key not in self.lookup_table:
+            return {}
+        if attr is None:
+            return self.lookup_table[key]
+        elif attr in self.lookup_table[key]:
+            return self.lookup_table[key][attr]
+        else:
+            return None

     def _map_attributes(self, arg, levels, defaults, attr):
         """Handle the specification for a given style attribute."""
-        pass
+        if arg is True:
+            return dict(zip(levels, defaults))
+        elif isinstance(arg, dict):
+            missing = set(levels) - set(arg)
+            if missing:
+                msg = f"These {attr} levels are missing: {missing}"
+                raise ValueError(msg)
+            return arg
+        elif isinstance(arg, Sequence):
+            if len(arg) != len(levels):
+                msg = f"The {attr} list has {len(arg)} values but there are {len(levels)} {attr} levels"
+                raise ValueError(msg)
+            return dict(zip(levels, arg))
+        else:
+            return {}


 class VectorPlotter:
@@ -214,7 +279,7 @@ class VectorPlotter:
     @property
     def has_xy_data(self):
         """Return True at least one of x or y is defined."""
-        pass
+        return any(var in self.plot_data for var in ['x', 'y'])

     @property
     def var_levels(self):
@@ -229,7 +294,12 @@ class VectorPlotter:
         tracking plot variables.

         """
-        pass
+        for var in ["hue", "size", "style"]:
+            if hasattr(self, f"{var}_map"):
+                mapper = getattr(self, f"{var}_map")
+                if mapper.levels is not None:
+                    self._var_levels[var] = list(mapper.levels)
+        return self._var_levels

     def assign_variables(self, data=None, variables={}):
         """Define plot variables, optionally using lookup from `data`."""
diff --git a/seaborn/_compat.py b/seaborn/_compat.py
index 76dc5054..b41f939a 100644
--- a/seaborn/_compat.py
+++ b/seaborn/_compat.py
@@ -9,35 +9,72 @@ from seaborn.utils import _version_predates

 def norm_from_scale(scale, norm):
     """Produce a Normalize object given a Scale and min/max domain limits."""
-    pass
+    if isinstance(scale, mpl.scale.LogScale):
+        return mpl.colors.LogNorm(vmin=norm.vmin, vmax=norm.vmax)
+    elif isinstance(scale, mpl.scale.SymmetricalLogScale):
+        return mpl.colors.SymLogNorm(linthresh=scale.linthresh, linscale=scale.linscale,
+                                     vmin=norm.vmin, vmax=norm.vmax)
+    else:
+        return mpl.colors.Normalize(vmin=norm.vmin, vmax=norm.vmax)


 def get_colormap(name):
     """Handle changes to matplotlib colormap interface in 3.6."""
-    pass
+    if _version_predates(mpl, "3.6"):
+        return mpl.cm.get_cmap(name)
+    else:
+        return mpl.colormaps[name]


 def register_colormap(name, cmap):
     """Handle changes to matplotlib colormap interface in 3.6."""
-    pass
+    if _version_predates(mpl, "3.6"):
+        mpl.cm.register_cmap(name, cmap)
+    else:
+        mpl.colormaps.register(cmap, name=name)


 def set_layout_engine(fig: Figure, engine: Literal['constrained',
     'compressed', 'tight', 'none']) ->None:
     """Handle changes to auto layout engine interface in 3.6"""
-    pass
+    if _version_predates(mpl, "3.6"):
+        if engine == 'none':
+            fig.set_tight_layout(False)
+        elif engine == 'tight':
+            fig.set_tight_layout(True)
+        else:
+            fig.set_constrained_layout(True)
+    else:
+        fig.set_layout_engine(engine)


 def get_layout_engine(fig: Figure) ->(mpl.layout_engine.LayoutEngine | None):
     """Handle changes to auto layout engine interface in 3.6"""
-    pass
+    if _version_predates(mpl, "3.6"):
+        if fig.get_tight_layout():
+            return 'tight'
+        elif fig.get_constrained_layout():
+            return 'constrained'
+        else:
+            return None
+    else:
+        return fig.get_layout_engine()


 def share_axis(ax0, ax1, which):
     """Handle changes to post-hoc axis sharing."""
-    pass
+    if _version_predates(mpl, "3.5"):
+        if which == 'x':
+            ax0.get_shared_x_axes().join(ax0, ax1)
+        elif which == 'y':
+            ax0.get_shared_y_axes().join(ax0, ax1)
+    else:
+        ax0.sharex(ax1) if which == 'x' else ax0.sharey(ax1)


 def get_legend_handles(legend):
     """Handle legendHandles attribute rename."""
-    pass
+    if _version_predates(mpl, "3.7"):
+        return legend.legendHandles
+    else:
+        return legend.legend_handles
diff --git a/seaborn/_core/data.py b/seaborn/_core/data.py
index e6ece7c9..f25682cd 100644
--- a/seaborn/_core/data.py
+++ b/seaborn/_core/data.py
@@ -64,7 +64,28 @@ class PlotData:
     def join(self, data: DataSource, variables: (dict[str, VariableSpec] |
         None)) ->PlotData:
         """Add, replace, or drop variables and return as a new dataset."""
-        pass
+        new_data = handle_data_source(data)
+        if variables is None:
+            variables = {}
+        
+        new_frame, new_names, new_ids = self._assign_variables(new_data, variables)
+        
+        # Merge the new frame with the existing one
+        merged_frame = self.frame.join(new_frame, how='outer')
+        
+        # Update names and ids
+        merged_names = {**self.names, **new_names}
+        merged_ids = {**self.ids, **new_ids}
+        
+        # Create a new PlotData instance
+        new_plot_data = PlotData(merged_frame, {})
+        new_plot_data.frame = merged_frame
+        new_plot_data.names = merged_names
+        new_plot_data.ids = merged_ids
+        new_plot_data.source_data = {**self.source_data, **new_data} if isinstance(self.source_data, dict) else new_data
+        new_plot_data.source_vars = {**self.source_vars, **variables}
+        
+        return new_plot_data

     def _assign_variables(self, data: (DataFrame | Mapping | None),
         variables: dict[str, VariableSpec]) ->tuple[DataFrame, dict[str, 
@@ -102,14 +123,58 @@ class PlotData:
             non-indexed vector datatypes that have a different length from `data`.

         """
-        pass
+        if not isinstance(data, (pd.DataFrame, Mapping)) and data is not None:
+            raise TypeError("Data source must be a DataFrame, Mapping, or None")
+
+        frame = pd.DataFrame()
+        names = {}
+        ids = {}
+
+        for var_name, var_spec in variables.items():
+            if isinstance(var_spec, str):
+                if data is None or var_spec not in data:
+                    raise ValueError(f"Variable '{var_spec}' not found in data")
+                frame[var_name] = data[var_spec]
+                names[var_name] = var_spec
+                ids[var_name] = id(data[var_spec])
+            else:
+                try:
+                    series = pd.Series(var_spec, name=var_name)
+                    if data is not None and len(series) != len(data):
+                        raise ValueError(f"Length of variable '{var_name}' does not match data length")
+                    frame[var_name] = series
+                    names[var_name] = getattr(var_spec, 'name', None)
+                    ids[var_name] = id(var_spec)
+                except Exception as e:
+                    raise ValueError(f"Could not convert variable '{var_name}' to Series: {str(e)}")
+
+        return frame, names, ids


 def handle_data_source(data: object) ->(pd.DataFrame | Mapping | None):
     """Convert the data source object to a common union representation."""
-    pass
+    if data is None:
+        return None
+    elif isinstance(data, pd.DataFrame):
+        return data
+    elif isinstance(data, Mapping):
+        return data
+    elif hasattr(data, '__dataframe__'):  # Check for DataFrame exchange protocol
+        return convert_dataframe_to_pandas(data)
+    else:
+        try:
+            return pd.DataFrame(data)
+        except Exception:
+            raise TypeError("Unable to convert data source to DataFrame or Mapping")


 def convert_dataframe_to_pandas(data: object) ->pd.DataFrame:
     """Use the DataFrame exchange protocol, or fail gracefully."""
-    pass
+    try:
+        df = data.__dataframe__()
+        if isinstance(df, pd.DataFrame):
+            return df
+        else:
+            return pd.DataFrame(df.to_pandas())
+    except Exception as e:
+        raise ValueError(f"Failed to convert data using DataFrame exchange protocol: {str(e)}")
diff --git a/seaborn/_core/exceptions.py b/seaborn/_core/exceptions.py
index b90716ec..c6db38aa 100644
--- a/seaborn/_core/exceptions.py
+++ b/seaborn/_core/exceptions.py
@@ -24,4 +24,7 @@ class PlotSpecError(RuntimeError):
         """
         Initialize the class to report the failure of a specific operation.
         """
-        pass
+        message = f"Error occurred during {step}"
+        if var:
+            message += f" for variable '{var}'"
+        return cls(message)
diff --git a/seaborn/_core/groupby.py b/seaborn/_core/groupby.py
index 89566c5e..451b35db 100644
--- a/seaborn/_core/groupby.py
+++ b/seaborn/_core/groupby.py
@@ -42,16 +42,33 @@ class GroupBy:
             order = {k: None for k in order}
         self.order = order

-    def _get_groups(self, data: DataFrame) ->tuple[str | list[str], Index |
-        MultiIndex]:
+    def _get_groups(self, data: DataFrame) -> tuple[str | list[str], Index | MultiIndex]:
         """Return index with Cartesian product of ordered grouping variable levels."""
-        pass
+        groupers = []
+        levels = []
+        names = []
+        for var, order in self.order.items():
+            if var in data.columns:
+                groupers.append(data[var])
+                level = categorical_order(data[var], order)
+                levels.append(level)
+                names.append(var)
+        
+        if len(names) == 1:
+            index = pd.Index(levels[0], name=names[0])
+            return names[0], index
+        else:
+            index = pd.MultiIndex.from_product(levels, names=names)
+            return names, index

     def _reorder_columns(self, res, data):
         """Reorder result columns to match original order with new columns appended."""
-        pass
+        original_cols = data.columns
+        new_cols = [col for col in res.columns if col not in original_cols]
+        reordered_cols = list(original_cols) + new_cols
+        return res.reindex(columns=reordered_cols)

-    def agg(self, data: DataFrame, *args, **kwargs) ->DataFrame:
+    def agg(self, data: DataFrame, *args, **kwargs) -> DataFrame:
         """
         Reduce each group to a single row in the output.

@@ -60,9 +77,27 @@ class GroupBy:
         those combinations do not appear in the dataset.

         """
-        pass
+        groupers, index = self._get_groups(data)
+        grouped = data.groupby(groupers, observed=False)
+        res = grouped.agg(*args, **kwargs)
+        
+        if isinstance(res.index, pd.MultiIndex):
+            res = res.reindex(index)
+        else:
+            res = res.reindex(index.get_level_values(0))
+        
+        return self._reorder_columns(res, data)

     def apply(self, data: DataFrame, func: Callable[..., DataFrame], *args,
-        **kwargs) ->DataFrame:
+        **kwargs) -> DataFrame:
         """Apply a DataFrame -> DataFrame mapping to each group."""
-        pass
+        groupers, index = self._get_groups(data)
+        grouped = data.groupby(groupers, observed=False)
+        res = grouped.apply(func, *args, **kwargs)
+        
+        if isinstance(res.index, pd.MultiIndex):
+            res = res.reindex(index.append(pd.Index(res.index.levels[-1])))
+        else:
+            res = res.reindex(index)
+        
+        return self._reorder_columns(res, data)
diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py
index 0695b4a6..cb54a995 100644
--- a/seaborn/_core/plot.py
+++ b/seaborn/_core/plot.py
@@ -69,7 +69,12 @@ class PairSpec(TypedDict, total=(False)):
 @contextmanager
 def theme_context(params: dict[str, Any]) ->Generator:
     """Temporarily modify specifc matplotlib rcParams."""
-    pass
+    original_params = {k: mpl.rcParams[k] for k in params}
+    mpl.rcParams.update(params)
+    try:
+        yield
+    finally:
+        mpl.rcParams.update(original_params)


 def build_plot_signature(cls):
@@ -81,7 +86,15 @@ def build_plot_signature(cls):
     at which point dynamic signature generation would become more important.

     """
-    pass
+    def wrapper(cls):
+        params = [
+            inspect.Parameter("self", inspect.Parameter.POSITIONAL_OR_KEYWORD),
+            inspect.Parameter("data", inspect.Parameter.POSITIONAL_OR_KEYWORD, default=None),
+            *[inspect.Parameter(prop, inspect.Parameter.KEYWORD_ONLY) for prop in PROPERTIES]
+        ]
+        cls.__signature__ = inspect.Signature(params)
+        return cls
+    return wrapper


 class ThemeConfig(mpl.RcParams):
@@ -98,15 +111,24 @@ class ThemeConfig(mpl.RcParams):

     def reset(self) ->None:
         """Update the theme dictionary with seaborn's default values."""
-        pass
+        self.clear()
+        with axes_style() as style, plotting_context() as context:
+            self.update(style)
+            self.update(context)

     def update(self, other: (dict[str, Any] | None)=None, /, **kwds):
         """Update the theme with a dictionary or keyword arguments of rc parameters."""
-        pass
+        if other is not None:
+            kwds.update(other)
+        filtered = self._filter_params(kwds)
+        super().update(filtered)

     def _filter_params(self, params: dict[str, Any]) ->dict[str, Any]:
-        """Restruct to thematic rc params."""
-        pass
+        """Restrict to thematic rc params."""
+        return {
+            k: v for k, v in params.items()
+            if any(k.startswith(f"{group}.") for group in self.THEME_GROUPS)
+        }


 class DisplayConfig(TypedDict):
@@ -132,7 +154,7 @@ class PlotConfig:
         https://matplotlib.org/stable/tutorials/introductory/customizing.html

         """
-        pass
+        return dict(self._theme)

     @property
     def display(self) ->DisplayConfig:
@@ -146,7 +168,7 @@ class PlotConfig:
         - hidpi (bool): When True, double the DPI while preserving the size

         """
-        pass
+        return self._display.copy()


 @build_plot_signature
diff --git a/seaborn/_core/properties.py b/seaborn/_core/properties.py
index 74be300e..b9137f0d 100644
--- a/seaborn/_core/properties.py
+++ b/seaborn/_core/properties.py
@@ -36,27 +36,48 @@ class Property:

     def default_scale(self, data: Series) ->Scale:
         """Given data, initialize appropriate scale class."""
-        pass
+        data_type = variable_type(data)
+        if data_type == "numeric":
+            return Continuous()
+        elif data_type == "datetime":
+            return Temporal()
+        else:
+            return Nominal()

     def infer_scale(self, arg: Any, data: Series) ->Scale:
         """Given data and a scaling argument, initialize appropriate scale class."""
-        pass
+        if isinstance(arg, Scale):
+            return arg
+        elif arg is None:
+            return self.default_scale(data)
+        elif isinstance(arg, str):
+            if arg.lower() in ["categorical", "nominal"]:
+                return Nominal()
+            elif arg.lower() in ["numeric", "continuous"]:
+                return Continuous()
+            elif arg.lower() == "datetime":
+                return Temporal()
+        raise ValueError(f"Unrecognized scale type: {arg}")

     def get_mapping(self, scale: Scale, data: Series) ->Mapping:
         """Return a function that maps from data domain to property range."""
-        pass
+        return scale.get_mapping(data)

     def standardize(self, val: Any) ->Any:
         """Coerce flexible property value to standardized representation."""
-        pass
+        return val

     def _check_dict_entries(self, levels: list, values: dict) ->None:
         """Input check when values are provided as a dictionary."""
-        pass
+        missing = set(levels) - set(values)
+        if missing:
+            raise ValueError(f"Missing values for levels: {', '.join(missing)}")

     def _check_list_length(self, levels: list, values: list) ->list:
         """Input check when values are provided as a list."""
-        pass
+        if len(values) < len(levels):
+            raise ValueError(f"Not enough values ({len(values)}) for levels ({len(levels)})")
+        return values[:len(levels)]


 class Coordinate(Property):
@@ -74,35 +95,54 @@ class IntervalProperty(Property):
     @property
     def default_range(self) ->tuple[float, float]:
         """Min and max values used by default for semantic mapping."""
-        pass
+        return self._default_range

     def _forward(self, values: ArrayLike) ->ArrayLike:
         """Transform applied to native values before linear mapping into interval."""
-        pass
+        return values

     def _inverse(self, values: ArrayLike) ->ArrayLike:
         """Transform applied to results of mapping that returns to native values."""
-        pass
+        return values

     def infer_scale(self, arg: Any, data: Series) ->Scale:
         """Given data and a scaling argument, initialize appropriate scale class."""
-        pass
+        scale = super().infer_scale(arg, data)
+        if isinstance(scale, Continuous):
+            scale.range = self.default_range
+        return scale

     def get_mapping(self, scale: Scale, data: Series) ->Mapping:
         """Return a function that maps from data domain to property range."""
-        pass
+        if isinstance(scale, Nominal):
+            return self._get_nominal_mapping(scale, data)
+        elif isinstance(scale, Boolean):
+            return self._get_boolean_mapping(scale, data)
+        else:
+            return lambda x: np.interp(self._forward(x), (data.min(), data.max()), self.default_range)

     def _get_nominal_mapping(self, scale: Nominal, data: Series) ->Mapping:
         """Identify evenly-spaced values using interval or explicit mapping."""
-        pass
+        levels = categorical_order(data)
+        values = self._get_values(scale, levels)
+        return lambda x: dict(zip(levels, values))[x]

     def _get_boolean_mapping(self, scale: Boolean, data: Series) ->Mapping:
         """Identify evenly-spaced values using interval or explicit mapping."""
-        pass
+        values = self._get_values(scale, [False, True])
+        return lambda x: values[int(x)]

     def _get_values(self, scale: Scale, levels: list) ->list:
         """Validate scale.values and identify a value for each level."""
-        pass
+        if scale.values is None:
+            n = len(levels)
+            values = np.linspace(*self.default_range, n)
+        elif isinstance(scale.values, dict):
+            self._check_dict_entries(levels, scale.values)
+            values = [scale.values[level] for level in levels]
+        else:
+            values = self._check_list_length(levels, scale.values)
+        return list(self._inverse(values))


 class PointSize(IntervalProperty):
@@ -111,11 +151,11 @@ class PointSize(IntervalProperty):

     def _forward(self, values):
         """Square native values to implement linear scaling of point area."""
-        pass
+        return np.square(values)

     def _inverse(self, values):
         """Invert areal values back to point diameter."""
-        pass
+        return np.sqrt(values)


 class LineWidth(IntervalProperty):
@@ -124,7 +164,7 @@ class LineWidth(IntervalProperty):
     @property
     def default_range(self) ->tuple[float, float]:
         """Min and max values used by default for semantic mapping."""
-        pass
+        return 0.5, 2


 class EdgeWidth(IntervalProperty):
@@ -133,7 +173,7 @@ class EdgeWidth(IntervalProperty):
     @property
     def default_range(self) ->tuple[float, float]:
         """Min and max values used by default for semantic mapping."""
-        pass
+        return 0, 2


 class Stroke(IntervalProperty):
@@ -159,7 +199,7 @@ class FontSize(IntervalProperty):
     @property
     def default_range(self) ->tuple[float, float]:
         """Min and max values used by default for semantic mapping."""
-        pass
+        return 8, 12


 class ObjectProperty(Property):
@@ -170,11 +210,20 @@ class ObjectProperty(Property):

     def get_mapping(self, scale: Scale, data: Series) ->Mapping:
         """Define mapping as lookup into list of object values."""
-        pass
+        levels = categorical_order(data)
+        values = self._get_values(scale, levels)
+        return lambda x: dict(zip(levels, values)).get(x, self.null_value)

     def _get_values(self, scale: Scale, levels: list) ->list:
         """Validate scale.values and identify a value for each level."""
-        pass
+        if scale.values is None:
+            values = self._default_values(len(levels))
+        elif isinstance(scale.values, dict):
+            self._check_dict_entries(levels, scale.values)
+            values = [scale.values[level] for level in levels]
+        else:
+            values = self._check_list_length(levels, scale.values)
+        return values


 class Marker(ObjectProperty):
@@ -196,7 +245,11 @@ class Marker(ObjectProperty):
             All markers will be filled.

         """
-        pass
+        markers = ['o', 's', 'D', '^', 'v', '<', '>', 'p', 'h', '8']
+        if n <= len(markers):
+            return [MarkerStyle(m) for m in markers[:n]]
+        else:
+            return [MarkerStyle(m) for m in markers + [f'${i}$' for i in range(n - len(markers))]]


 class LineStyle(ObjectProperty):
@@ -220,12 +273,24 @@ class LineStyle(ObjectProperty):
             dashes.

         """
-        pass
+        dashes = ["", (4, 1.5), (1, 1),
+                  (3, 1, 1.5, 1), (5, 1, 1, 1),
+                  (5, 1, 2, 1, 2, 1), (2, 2, 3, 1.5),
+                  (1, 2.5, 3, 1.5), (4, 1, 2, 1, 2, 1)]
+        if n <= len(dashes):
+            return [self._get_dash_pattern(d) for d in dashes[:n]]
+        else:
+            return [self._get_dash_pattern(d) for d in dashes + [(1, 1)] * (n - len(dashes))]

     @staticmethod
     def _get_dash_pattern(style: (str | DashPattern)) ->DashPatternWithOffset:
         """Convert linestyle arguments to dash pattern with offset."""
-        pass
+        if isinstance(style, str):
+            return mpl.lines._get_dash_pattern(style)
+        elif isinstance(style, tuple):
+            return (0, style)
+        else:
+            raise ValueError(f"Unrecognized linestyle: {style}")


 class TextAlignment(ObjectProperty):
@@ -247,15 +312,40 @@ class Color(Property):

     def _standardize_color_sequence(self, colors: ArrayLike) ->ArrayLike:
         """Convert color sequence to RGB(A) array, preserving but not adding alpha."""
-        pass
+        rgba = to_rgba_array(colors)
+        if np.all(rgba[:, 3] == 1):
+            return rgba[:, :3]
+        return rgba

     def get_mapping(self, scale: Scale, data: Series) ->Mapping:
         """Return a function that maps from data domain to color values."""
-        pass
+        if isinstance(scale, Nominal):
+            levels = categorical_order(data)
+            palette = self._get_values(scale, levels)
+            color_list = self._standardize_color_sequence(palette)
+            return lambda x: dict(zip(levels, color_list))[x]
+        elif isinstance(scale, Boolean):
+            palette = self._get_values(scale, [False, True])
+            color_list = self._standardize_color_sequence(palette)
+            return lambda x: color_list[int(x)]
+        else:
+            palette = self._get_values(scale, [])
+            return lambda x: self._standardize_color_sequence(
+                blend_palette(palette, x, as_cmap=True)(x)
+            )

     def _get_values(self, scale: Scale, levels: list) ->ArrayLike:
         """Validate scale.values and identify a value for each level."""
-        pass
+        if scale.values is None:
+            n_colors = len(levels) if levels else 256
+            return color_palette(n_colors=n_colors)
+        elif isinstance(scale.values, str):
+            return color_palette(scale.values, n_colors=len(levels))
+        elif isinstance(scale.values, dict):
+            self._check_dict_entries(levels, scale.values)
+            return [scale.values[level] for level in levels]
+        else:
+            return self._check_list_length(levels, scale.values)


 class Fill(Property):
@@ -265,15 +355,29 @@ class Fill(Property):

     def _default_values(self, n: int) ->list:
         """Return a list of n values, alternating True and False."""
-        pass
+        return [i % 2 == 0 for i in range(n)]

     def get_mapping(self, scale: Scale, data: Series) ->Mapping:
         """Return a function that maps each data value to True or False."""
-        pass
+        if isinstance(scale, Nominal):
+            levels = categorical_order(data)
+            values = self._get_values(scale, levels)
+            return lambda x: dict(zip(levels, values))[x]
+        elif isinstance(scale, Boolean):
+            values = self._get_values(scale, [False, True])
+            return lambda x: values[int(x)]
+        else:
+            raise ValueError("Fill property only supports nominal or boolean scales")

     def _get_values(self, scale: Scale, levels: list) ->list:
         """Validate scale.values and identify a value for each level."""
-        pass
+        if scale.values is None:
+            return self._default_values(len(levels))
+        elif isinstance(scale.values, dict):
+            self._check_dict_entries(levels, scale.values)
+            return [scale.values[level] for level in levels]
+        else:
+            return self._check_list_length(levels, scale.values)


 PROPERTY_CLASSES = {'x': Coordinate, 'y': Coordinate, 'color': Color,
diff --git a/seaborn/_core/rules.py b/seaborn/_core/rules.py
index d78093c0..a6be865e 100644
--- a/seaborn/_core/rules.py
+++ b/seaborn/_core/rules.py
@@ -57,7 +57,32 @@ def variable_type(vector: Series, boolean_type: Literal['numeric',
     var_type : 'numeric', 'categorical', or 'datetime'
         Name identifying the type of data in the vector.
     """
-    pass
+    if not isinstance(vector, pd.Series):
+        vector = pd.Series(vector)
+
+    if pd.api.types.is_datetime64_any_dtype(vector):
+        return VarType('datetime')
+
+    if strict_boolean and pd.api.types.is_bool_dtype(vector):
+        return VarType(boolean_type)
+
+    if pd.api.types.is_numeric_dtype(vector):
+        if set(vector.dropna().unique()) <= {0, 1}:
+            return VarType(boolean_type)
+        return VarType('numeric')
+
+    if pd.api.types.is_categorical_dtype(vector):
+        return VarType('categorical')
+
+    # Check if all values are numeric
+    try:
+        pd.to_numeric(vector, errors='raise')
+        return VarType('numeric')
+    except (ValueError, TypeError):
+        pass
+
+    # If we reach here, it's likely categorical
+    return VarType('categorical')


 def categorical_order(vector: Series, order: (list | None)=None) ->list:
@@ -78,4 +103,16 @@ def categorical_order(vector: Series, order: (list | None)=None) ->list:
         Ordered list of category levels not including null values.

     """
-    pass
+    if order is not None:
+        return [c for c in order if c in vector.unique()]
+
+    if hasattr(vector, "categories"):
+        return [c for c in vector.categories if c in vector.unique()]
+
+    if vector.dtype.name == "category":
+        return [c for c in vector.cat.categories if c in vector.unique()]
+
+    if pd.api.types.is_numeric_dtype(vector):
+        return sorted(vector.unique())
+
+    return pd.Series(vector).unique().tolist()
diff --git a/seaborn/_core/scales.py b/seaborn/_core/scales.py
index 99f98988..4b3d09ab 100644
--- a/seaborn/_core/scales.py
+++ b/seaborn/_core/scales.py
@@ -101,7 +101,9 @@ class Nominal(Scale):
         Copy of self with new tick configuration.

         """
-        pass
+        new_scale = copy(self)
+        new_scale._tick_params = {"locator": locator}
+        return new_scale

     def label(self, formatter: (Formatter | None)=None) ->Nominal:
         """
@@ -122,7 +124,9 @@ class Nominal(Scale):
             Copy of self with new tick configuration.

         """
-        pass
+        new_scale = copy(self)
+        new_scale._label_params = {"formatter": formatter}
+        return new_scale


 @dataclass
@@ -180,7 +184,17 @@ class Continuous(ContinuousBase):
             Copy of self with new tick configuration.

         """
-        pass
+        new_scale = copy(self)
+        new_scale._tick_params = {
+            "locator": locator,
+            "at": at,
+            "upto": upto,
+            "count": count,
+            "every": every,
+            "between": between,
+            "minor": minor
+        }
+        return new_scale

     def label(self, formatter: (Formatter | None)=None, *, like: (str |
         Callable | None)=None, base: (int | None | Default)=default, unit:
@@ -211,7 +225,14 @@ class Continuous(ContinuousBase):
             Copy of self with new label configuration.

         """
-        pass
+        new_scale = copy(self)
+        new_scale._label_params = {
+            "formatter": formatter,
+            "like": like,
+            "base": base,
+            "unit": unit
+        }
+        return new_scale


 @dataclass
@@ -243,7 +264,12 @@ class Temporal(ContinuousBase):
             Copy of self with new tick configuration.

         """
-        pass
+        new_scale = copy(self)
+        new_scale._tick_params = {
+            "locator": locator,
+            "upto": upto
+        }
+        return new_scale

     def label(self, formatter: (Formatter | None)=None, *, concise: bool=False
         ) ->Temporal:
@@ -267,7 +293,12 @@ class Temporal(ContinuousBase):
             Copy of self with new label configuration.

         """
-        pass
+        new_scale = copy(self)
+        new_scale._label_params = {
+            "formatter": formatter,
+            "concise": concise
+        }
+        return new_scale


 class PseudoAxis:
diff --git a/seaborn/_core/subplots.py b/seaborn/_core/subplots.py
index ab72e2f0..3263459e 100644
--- a/seaborn/_core/subplots.py
+++ b/seaborn/_core/subplots.py
@@ -39,27 +39,71 @@ class Subplots:
     def _check_dimension_uniqueness(self, facet_spec: FacetSpec, pair_spec:
         PairSpec) ->None:
         """Reject specs that pair and facet on (or wrap to) same figure dimension."""
-        pass
+        facet_dims = set(facet_spec.get("col", "")) | set(facet_spec.get("row", ""))
+        pair_dims = set(pair_spec.get("x", "")) | set(pair_spec.get("y", ""))
+        
+        if facet_dims & pair_dims:
+            raise ValueError("Cannot facet and pair on the same dimension.")
+        
+        if facet_spec.get("wrap") and (facet_spec.get("wrap") in pair_dims):
+            raise ValueError("Cannot wrap facets on a dimension used for pairing.")

     def _determine_grid_dimensions(self, facet_spec: FacetSpec, pair_spec:
         PairSpec) ->None:
         """Parse faceting and pairing information to define figure structure."""
-        pass
+        self.nrows = facet_spec.get("row", 1)
+        self.ncols = facet_spec.get("col", 1)
+        
+        if pair_spec:
+            self.nrows *= len(pair_spec.get("y", [1]))
+            self.ncols *= len(pair_spec.get("x", [1]))
+        
+        self.n_subplots = self.nrows * self.ncols

     def _handle_wrapping(self, facet_spec: FacetSpec, pair_spec: PairSpec
         ) ->None:
         """Update figure structure parameters based on facet/pair wrapping."""
-        pass
+        wrap = facet_spec.get("wrap")
+        if wrap:
+            total_subplots = self.nrows * self.ncols
+            self.ncols = min(wrap, total_subplots)
+            self.nrows = (total_subplots - 1) // self.ncols + 1

     def _determine_axis_sharing(self, pair_spec: PairSpec) ->None:
         """Update subplot spec with default or specified axis sharing parameters."""
-        pass
+        self.subplot_spec.setdefault("sharex", "col" in pair_spec)
+        self.subplot_spec.setdefault("sharey", "row" in pair_spec)

     def init_figure(self, pair_spec: PairSpec, pyplot: bool=False,
         figure_kws: (dict | None)=None, target: (Axes | Figure | SubFigure |
         None)=None) ->Figure:
         """Initialize matplotlib objects and add seaborn-relevant metadata."""
-        pass
+        if target is None:
+            if pyplot:
+                fig, axes = plt.subplots(self.nrows, self.ncols, **self.subplot_spec)
+            else:
+                fig = Figure(**figure_kws or {})
+                axes = fig.subplots(self.nrows, self.ncols, **self.subplot_spec)
+        else:
+            if isinstance(target, Axes):
+                fig = target.figure
+                axes = np.array([[target]])
+            elif isinstance(target, (Figure, SubFigure)):
+                fig = target
+                axes = fig.subplots(self.nrows, self.ncols, **self.subplot_spec)
+            else:
+                raise TypeError("Unsupported target type")
+
+        self._subplot_list = [
+            {
+                "ax": ax,
+                "row": i // self.ncols,
+                "col": i % self.ncols,
+            }
+            for i, ax in enumerate(axes.flat)
+        ]
+
+        return fig

     def __iter__(self) ->Generator[dict, None, None]:
         """Yield each subplot dictionary with Axes object and metadata."""
diff --git a/seaborn/_docstrings.py b/seaborn/_docstrings.py
index 92bca3b0..6d90fb35 100644
--- a/seaborn/_docstrings.py
+++ b/seaborn/_docstrings.py
@@ -36,12 +36,25 @@ class DocstringComponents:
     @classmethod
     def from_nested_components(cls, **kwargs):
         """Add multiple sub-sets of components."""
-        pass
+        entries = {}
+        for key, value in kwargs.items():
+            if isinstance(value, cls):
+                entries.update(value.entries)
+            elif isinstance(value, dict):
+                entries.update(value)
+            else:
+                raise ValueError(f"Invalid component type for {key}")
+        return cls(entries)

     @classmethod
     def from_function_params(cls, func):
         """Use the numpydoc parser to extract components from existing func."""
-        pass
+        doc = NumpyDocString(pydoc.getdoc(func))
+        params = {}
+        for param in doc['Parameters']:
+            name, _, desc = param
+            params[name] = '\n'.join(desc)
+        return cls(params)


 _core_params = dict(data=
diff --git a/seaborn/_marks/area.py b/seaborn/_marks/area.py
index 427c1a16..bb3181cd 100644
--- a/seaborn/_marks/area.py
+++ b/seaborn/_marks/area.py
@@ -7,7 +7,30 @@ from seaborn._marks.base import Mark, Mappable, MappableBool, MappableFloat, Map


 class AreaBase:
-    pass
+    def __init__(self):
+        self._artist = None
+
+    def _plot(self, ax, x, y, y2=None, **kwargs):
+        if y2 is None:
+            y2 = self.baseline
+        
+        fill_between_kwargs = {
+            'x': x,
+            'y1': y,
+            'y2': y2,
+            'color': kwargs.get('color'),
+            'alpha': kwargs.get('alpha'),
+            'edgecolor': kwargs.get('edgecolor'),
+            'linewidth': kwargs.get('edgewidth'),
+            'linestyle': kwargs.get('edgestyle'),
+        }
+        
+        self._artist = ax.fill_between(**fill_between_kwargs)
+        return self._artist
+
+    def _legend_artist(self, color):
+        from matplotlib.patches import Rectangle
+        return Rectangle((0, 0), 1, 1, facecolor=color, edgecolor=None)


 @document_properties
@@ -34,6 +57,22 @@ class Area(AreaBase, Mark):
     edgestyle: MappableStyle = Mappable('-')
     baseline: MappableFloat = Mappable(0, grouping=False)

+    def __post_init__(self):
+        super().__init__()
+
+    def plot(self, ax, x, y, **kwargs):
+        properties = resolve_properties(self, kwargs)
+        if not properties['fill']:
+            properties['alpha'] = 0
+        
+        color = resolve_color(properties.pop('color'))
+        properties['color'] = color
+        
+        edgecolor = resolve_color(properties.pop('edgecolor'), color)
+        properties['edgecolor'] = edgecolor
+        
+        return self._plot(ax, x, y, **properties)
+

 @document_properties
 @dataclass
@@ -57,3 +96,19 @@ class Band(AreaBase, Mark):
     edgealpha: MappableFloat = Mappable(1)
     edgewidth: MappableFloat = Mappable(0)
     edgestyle: MappableFloat = Mappable('-')
+
+    def __post_init__(self):
+        super().__init__()
+
+    def plot(self, ax, x, y1, y2, **kwargs):
+        properties = resolve_properties(self, kwargs)
+        if not properties['fill']:
+            properties['alpha'] = 0
+        
+        color = resolve_color(properties.pop('color'))
+        properties['color'] = color
+        
+        edgecolor = resolve_color(properties.pop('edgecolor'), color)
+        properties['edgecolor'] = edgecolor
+        
+        return self._plot(ax, x, y1, y2, **properties)
diff --git a/seaborn/_marks/base.py b/seaborn/_marks/base.py
index 03ee03a9..d643a8c5 100644
--- a/seaborn/_marks/base.py
+++ b/seaborn/_marks/base.py
@@ -62,12 +62,19 @@ class Mappable:
     @property
     def depend(self) ->Any:
         """Return the name of the feature to source a default value from."""
-        pass
+        return self._depend

     @property
     def default(self) ->Any:
         """Get the default value for this feature, or access the relevant rcParam."""
-        pass
+        if self._val is not None:
+            return self._val
+        elif self._rc is not None:
+            return mpl.rcParams[self._rc]
+        elif self._auto:
+            return None  # This will be handled at compile time
+        else:
+            return None


 MappableBool = Union[bool, Mappable]
@@ -103,12 +110,33 @@ class Mark:
             of values with matching length).

         """
-        pass
+        feature = getattr(self, name)
+        
+        if isinstance(feature, Mappable):
+            if feature.depend is not None:
+                return self._resolve(data, feature.depend, scales)
+            elif name in data:
+                if isinstance(data, dict):
+                    return data[name]
+                elif isinstance(data, DataFrame):
+                    if scales and name in scales:
+                        return scales[name].transform(data[name])
+                    else:
+                        return data[name].to_numpy()
+            else:
+                return feature.default
+        else:
+            return feature

     def _plot(self, split_generator: Callable[[], Generator], scales: dict[
         str, Scale], orient: str) ->None:
         """Main interface for creating a plot."""
-        pass
+        for split_data in split_generator():
+            self._draw(split_data, scales, orient)
+
+    def _draw(self, data: DataFrame, scales: dict[str, Scale], orient: str) ->None:
+        """Abstract method to be implemented by subclasses for actual drawing."""
+        raise NotImplementedError("Subclasses must implement _draw method")


 def resolve_color(mark: Mark, data: (DataFrame | dict), prefix: str='',
@@ -133,4 +161,21 @@ def resolve_color(mark: Mark, data: (DataFrame | dict), prefix: str='',
         Support "color", "fillcolor", etc.

     """
-    pass
+    color_name = f"{prefix}color" if prefix else "color"
+    alpha_name = f"{prefix}alpha" if prefix else "alpha"
+
+    color = mark._resolve(data, color_name, scales)
+    alpha = mark._resolve(data, alpha_name, scales)
+
+    if isinstance(data, dict):
+        return _apply_alpha_to_color(color, alpha)
+    elif isinstance(data, DataFrame):
+        return np.array([_apply_alpha_to_color(c, a) for c, a in zip(color, alpha)])
+
+def _apply_alpha_to_color(color: Any, alpha: float) ->RGBATuple:
+    """Helper function to apply alpha to a color."""
+    try:
+        c = mpl.colors.to_rgba(color)
+        return c[:3] + (alpha if alpha is not None else c[3],)
+    except ValueError:
+        raise PlotSpecError(f"Invalid color specification: {color}")
diff --git a/seaborn/_statistics.py b/seaborn/_statistics.py
index 2b81faf7..ecbeb933 100644
--- a/seaborn/_statistics.py
+++ b/seaborn/_statistics.py
@@ -79,31 +79,66 @@ class KDE:

     def _define_support_grid(self, x, bw, cut, clip, gridsize):
         """Create the grid of evaluation points depending for vector x."""
-        pass
+        x = np.asarray(x)
+        support_min = x.min() - bw * cut
+        support_max = x.max() + bw * cut
+        if clip is not None:
+            support_min = max(support_min, clip[0])
+            support_max = min(support_max, clip[1])
+        return np.linspace(support_min, support_max, gridsize)

     def _define_support_univariate(self, x, weights):
         """Create a 1D grid of evaluation points."""
-        pass
+        kde = self._fit(x, weights)
+        bw = kde.factor * np.std(x, ddof=1)
+        return self._define_support_grid(x, bw, self.cut, self.clip, self.gridsize)

     def _define_support_bivariate(self, x1, x2, weights):
         """Create a 2D grid of evaluation points."""
-        pass
+        kde = self._fit(np.c_[x1, x2], weights)
+        bw = kde.factor * np.std([x1, x2], axis=1, ddof=1)
+        grid1 = self._define_support_grid(x1, bw[0], self.cut, self.clip[0], self.gridsize)
+        grid2 = self._define_support_grid(x2, bw[1], self.cut, self.clip[1], self.gridsize)
+        return np.meshgrid(grid1, grid2)

     def define_support(self, x1, x2=None, weights=None, cache=True):
         """Create the evaluation grid for a given data set."""
-        pass
+        if x2 is None:
+            support = self._define_support_univariate(x1, weights)
+        else:
+            support = self._define_support_bivariate(x1, x2, weights)
+        
+        if cache:
+            self.support = support
+        return support

     def _fit(self, fit_data, weights=None):
         """Fit the scipy kde while adding bw_adjust logic and version check."""
-        pass
+        kde = gaussian_kde(fit_data.T, weights=weights, bw_method=self.bw_method)
+        kde.set_bandwidth(kde.factor * self.bw_adjust)
+        return kde

     def _eval_univariate(self, x, weights=None):
         """Fit and evaluate a univariate on univariate data."""
-        pass
+        kde = self._fit(x[:, np.newaxis], weights)
+        if self.support is None:
+            self.define_support(x, weights=weights)
+        density = kde(self.support)
+        if self.cumulative:
+            density = np.cumsum(density) / density.sum()
+        return self.support, density

     def _eval_bivariate(self, x1, x2, weights=None):
         """Fit and evaluate a univariate on bivariate data."""
-        pass
+        kde = self._fit(np.c_[x1, x2], weights)
+        if self.support is None:
+            self.define_support(x1, x2, weights=weights)
+        density = kde(np.vstack([self.support[0].ravel(), self.support[1].ravel()]))
+        density = density.reshape(self.support[0].shape)
+        if self.cumulative:
+            density = np.cumsum(density.ravel()).reshape(density.shape)
+            density /= density.max()
+        return self.support, density

     def __call__(self, x1, x2=None, weights=None):
         """Fit and evaluate on univariate or bivariate data."""
@@ -159,22 +194,75 @@ class Histogram:
         self.cumulative = cumulative
         self.bin_kws = None

-    def _define_bin_edges(self, x, weights, bins, binwidth, binrange, discrete
-        ):
+    def _define_bin_edges(self, x, weights, bins, binwidth, binrange, discrete):
         """Inner function that takes bin parameters as arguments."""
-        pass
+        if discrete:
+            bins = np.arange(x.min() - 0.5, x.max() + 1.5)
+        elif binwidth is not None:
+            bins = np.arange(binrange[0], binrange[1] + binwidth, binwidth)
+        else:
+            bins = np.histogram_bin_edges(x, bins, binrange, weights)
+        return bins

     def define_bin_params(self, x1, x2=None, weights=None, cache=True):
         """Given data, return numpy.histogram parameters to define bins."""
-        pass
+        if x2 is None:
+            bin_edges = self._define_bin_edges(x1, weights, self.bins, self.binwidth, self.binrange, self.discrete)
+            bin_kws = {"bins": bin_edges}
+        else:
+            bin_edges1 = self._define_bin_edges(x1, weights, self.bins, self.binwidth, self.binrange[0], self.discrete[0])
+            bin_edges2 = self._define_bin_edges(x2, weights, self.bins, self.binwidth, self.binrange[1], self.discrete[1])
+            bin_kws = {"bins": [bin_edges1, bin_edges2]}
+        
+        if cache:
+            self.bin_kws = bin_kws
+        return bin_kws

     def _eval_bivariate(self, x1, x2, weights):
         """Inner function for histogram of two variables."""
-        pass
+        if self.bin_kws is None:
+            self.define_bin_params(x1, x2, weights)
+        
+        hist, _, _ = np.histogram2d(x1, x2, weights=weights, **self.bin_kws)
+        
+        if self.stat == "density":
+            hist /= hist.sum() * np.diff(self.bin_kws["bins"][0]).mean() * np.diff(self.bin_kws["bins"][1]).mean()
+        elif self.stat in ["probability", "proportion"]:
+            hist /= hist.sum()
+        elif self.stat == "percent":
+            hist /= hist.sum() / 100
+        elif self.stat == "frequency":
+            hist /= np.diff(self.bin_kws["bins"][0]).mean() * np.diff(self.bin_kws["bins"][1]).mean()
+        
+        if self.cumulative:
+            hist = np.cumsum(hist)
+            if self.stat in ["probability", "proportion", "percent"]:
+                hist /= hist[-1, -1]
+        
+        return self.bin_kws["bins"][0], self.bin_kws["bins"][1], hist

     def _eval_univariate(self, x, weights):
         """Inner function for histogram of one variable."""
-        pass
+        if self.bin_kws is None:
+            self.define_bin_params(x, weights=weights)
+        
+        hist, bin_edges = np.histogram(x, weights=weights, **self.bin_kws)
+        
+        if self.stat == "density":
+            hist = hist / (hist.sum() * np.diff(bin_edges))
+        elif self.stat in ["probability", "proportion"]:
+            hist = hist / hist.sum()
+        elif self.stat == "percent":
+            hist = hist / hist.sum() * 100
+        elif self.stat == "frequency":
+            hist = hist / np.diff(bin_edges)
+        
+        if self.cumulative:
+            hist = np.cumsum(hist)
+            if self.stat in ["probability", "proportion", "percent"]:
+                hist /= hist[-1]
+        
+        return bin_edges, hist

     def __call__(self, x1, x2=None, weights=None):
         """Count the occurrences in each bin, maybe normalize."""
@@ -204,11 +292,28 @@ class ECDF:

     def _eval_bivariate(self, x1, x2, weights):
         """Inner function for ECDF of two variables."""
-        pass
+        raise NotImplementedError("Bivariate ECDF is not implemented.")

     def _eval_univariate(self, x, weights):
         """Inner function for ECDF of one variable."""
-        pass
+        sorter = np.argsort(x)
+        x = x[sorter]
+        weights = weights[sorter]
+        
+        cumulative_weights = np.cumsum(weights)
+        total_weight = cumulative_weights[-1]
+        
+        if self.stat == "count":
+            y = cumulative_weights
+        elif self.stat == "proportion":
+            y = cumulative_weights / total_weight
+        elif self.stat == "percent":
+            y = 100 * cumulative_weights / total_weight
+        
+        if self.complementary:
+            y = total_weight - y if self.stat == "count" else 1 - y
+        
+        return x, y

     def __call__(self, x1, x2=None, weights=None):
         """Return proportion or count of observations below each sorted datapoint."""
@@ -379,12 +484,39 @@ class LetterValues:
         return {'k': k, 'levels': levels, 'percs': percentiles, 'values':
             values, 'fliers': fliers, 'median': median}

+    def _compute_k(self, n):
+        """Compute the number of letter values to use."""
+        if isinstance(self.k_depth, int):
+            return min(self.k_depth, int(np.log2(n)))
+        elif self.k_depth == 'tukey':
+            return min(int(np.log2(n)), 3)
+        elif self.k_depth == 'proportion':
+            return min(int(np.log2(n)), max(1, int(-np.log2(2 * self.outlier_prop))))
+        elif self.k_depth == 'trustworthy':
+            return min(int(np.log2(n)), max(1, int(-np.log2(2 * self.trust_alpha / n))))
+        else:  # 'full'
+            return int(np.log2(n))
+

 def _percentile_interval(data, width):
     """Return a percentile interval from data of a given width."""
-    pass
+    low, high = (50 - width / 2, 50 + width / 2)
+    return np.percentile(data, [low, high])


 def _validate_errorbar_arg(arg):
     """Check type and value of errorbar argument and assign default level."""
-    pass
+    if arg is None:
+        return None, None
+    elif isinstance(arg, str):
+        method = arg
+        level = .95 if method == "ci" else 1
+    elif isinstance(arg, tuple):
+        method, level = arg
+    elif callable(arg):
+        method = arg
+        level = None
+    else:
+        raise ValueError(f"Input {arg!r} not understood for errorbar.")
+    
+    return method, level
diff --git a/seaborn/_stats/base.py b/seaborn/_stats/base.py
index 4c8201ba..3055a586 100644
--- a/seaborn/_stats/base.py
+++ b/seaborn/_stats/base.py
@@ -18,14 +18,30 @@ class Stat:

     def _check_param_one_of(self, param: str, options: Iterable[Any]) ->None:
         """Raise when parameter value is not one of a specified set."""
-        pass
+        if param not in options:
+            raise ValueError(f"Parameter '{param}' must be one of {options}")

     def _check_grouping_vars(self, param: str, data_vars: list[str],
         stacklevel: int=2) ->None:
         """Warn if vars are named in parameter without being present in the data."""
-        pass
+        missing_vars = set(param.split()) - set(data_vars)
+        if missing_vars:
+            warnings.warn(
+                f"The following variable(s) are not present in the data: {', '.join(missing_vars)}",
+                UserWarning,
+                stacklevel=stacklevel
+            )

     def __call__(self, data: DataFrame, groupby: GroupBy, orient: str,
         scales: dict[str, Scale]) ->DataFrame:
         """Apply statistical transform to data subgroups and return combined result."""
-        return data
+        if self.group_by_orient:
+            grouped_data = groupby.apply(data, self._transform, orient, scales)
+        else:
+            grouped_data = groupby.agg(data, self._transform, orient, scales)
+        return grouped_data
+
+    def _transform(self, data: DataFrame, orient: str, scales: dict[str, Scale]) ->DataFrame:
+        """Implement the statistical transformation."""
+        # This method should be overridden in subclasses
+        raise NotImplementedError("Subclasses must implement _transform method")
diff --git a/seaborn/_stats/counting.py b/seaborn/_stats/counting.py
index b1bf2a2d..ebcd2f42 100644
--- a/seaborn/_stats/counting.py
+++ b/seaborn/_stats/counting.py
@@ -112,11 +112,45 @@ class Hist(Stat):
     def _define_bin_edges(self, vals, weight, bins, binwidth, binrange,
         discrete):
         """Inner function that takes bin parameters as arguments."""
-        pass
+        if discrete:
+            if binrange is None:
+                start, stop = int(vals.min()), int(vals.max())
+            else:
+                start, stop = map(int, binrange)
+            return np.arange(start - 0.5, stop + 1.5)
+
+        if binwidth is not None:
+            if binrange is None:
+                start, stop = vals.min(), vals.max()
+            else:
+                start, stop = binrange
+            return np.arange(start, stop + binwidth, binwidth)
+
+        if np.isscalar(bins):
+            if binrange is not None:
+                range_param = binrange
+            else:
+                range_param = (vals.min(), vals.max())
+            return np.histogram_bin_edges(vals, bins, range_param, weights=weight)
+
+        return np.asarray(bins)

     def _define_bin_params(self, data, orient, scale_type):
         """Given data, return numpy.histogram parameters to define bins."""
-        pass
+        vals = data[orient].to_numpy()
+        weight = data.get("weight", None)
+
+        if scale_type == "datetime":
+            vals = vals.astype(float)
+
+        bin_edges = self._define_bin_edges(
+            vals, weight, self.bins, self.binwidth, self.binrange, self.discrete
+        )
+
+        if scale_type == "datetime":
+            bin_edges = pd.to_datetime(bin_edges)
+
+        return dict(bins=bin_edges, range=(bin_edges[0], bin_edges[-1]))

     def __call__(self, data: DataFrame, groupby: GroupBy, orient: str,
         scales: dict[str, Scale]) ->DataFrame:
diff --git a/seaborn/_stats/density.py b/seaborn/_stats/density.py
index 410c1a0b..896aca3b 100644
--- a/seaborn/_stats/density.py
+++ b/seaborn/_stats/density.py
@@ -96,25 +96,61 @@ class KDE(Stat):
     def _check_var_list_or_boolean(self, param: str, grouping_vars: Any
         ) ->None:
         """Do input checks on grouping parameters."""
-        pass
+        if not isinstance(getattr(self, param), (bool, list)):
+            raise TypeError(f"{param} must be boolean or list of variables")
+        if isinstance(getattr(self, param), list):
+            invalid_vars = set(getattr(self, param)) - set(grouping_vars)
+            if invalid_vars:
+                raise ValueError(f"Invalid variables in {param}: {invalid_vars}")

     def _fit(self, data: DataFrame, orient: str) ->gaussian_kde:
         """Fit and return a KDE object."""
-        pass
+        x = data[orient].to_numpy()
+        weights = data['weight'].to_numpy()
+        kde = gaussian_kde(x, weights=weights, bw_method=self.bw_method)
+        kde.set_bandwidth(kde.factor * self.bw_adjust)
+        return kde

     def _get_support(self, data: DataFrame, orient: str) ->ndarray:
         """Define the grid that the KDE will be evaluated on."""
-        pass
+        x = data[orient]
+        if self.gridsize is None:
+            return x.to_numpy()
+        
+        bw = self._fit(data, orient).factor
+        grid_min = x.min() - self.cut * bw
+        grid_max = x.max() + self.cut * bw
+        return np.linspace(grid_min, grid_max, self.gridsize)

     def _fit_and_evaluate(self, data: DataFrame, orient: str, support: ndarray
         ) ->DataFrame:
         """Transform single group by fitting a KDE and evaluating on a support grid."""
-        pass
+        kde = self._fit(data, orient)
+        density = kde(support)
+        
+        if self.cumulative:
+            density = np.cumsum(density) / np.sum(density)
+        
+        return pd.DataFrame({orient: support, 'density': density})

     def _transform(self, data: DataFrame, orient: str, grouping_vars: list[str]
         ) ->DataFrame:
         """Transform multiple groups by fitting KDEs and evaluating."""
-        pass
+        support = self._get_support(data, orient)
+        
+        if not grouping_vars:
+            return self._fit_and_evaluate(data, orient, support)
+        
+        groups = data.groupby(grouping_vars)
+        results = []
+        
+        for _, group_data in groups:
+            group_result = self._fit_and_evaluate(group_data, orient, support)
+            for var, val in zip(grouping_vars, group_data[grouping_vars].iloc[0]):
+                group_result[var] = val
+            results.append(group_result)
+        
+        return pd.concat(results, ignore_index=True)

     def __call__(self, data: DataFrame, groupby: GroupBy, orient: str,
         scales: dict[str, Scale]) ->DataFrame:
diff --git a/seaborn/algorithms.py b/seaborn/algorithms.py
index 2939e8bd..0ecef9ae 100644
--- a/seaborn/algorithms.py
+++ b/seaborn/algorithms.py
@@ -32,9 +32,51 @@ def bootstrap(*args, **kwargs):
         array of bootstrapped statistic values

     """
-    pass
+    n_boot = kwargs.get('n_boot', 10000)
+    axis = kwargs.get('axis', None)
+    units = kwargs.get('units', None)
+    func = kwargs.get('func', 'mean')
+    seed = kwargs.get('seed', None)

+    if isinstance(func, str):
+        if func.startswith('nan'):
+            func = getattr(np, func)
+        else:
+            func = getattr(np, func)
+            if np.any([np.isnan(arg).any() for arg in args]):
+                func = getattr(np, f'nan{func}')

-def _structured_bootstrap(args, n_boot, units, func, func_kwargs, integers):
+    if axis is not None:
+        kwargs['axis'] = axis
+
+    if units is not None:
+        return _structured_bootstrap(args, n_boot, units, func, kwargs, seed)
+
+    rng = np.random.default_rng(seed)
+    boot_dist = []
+    for _ in range(n_boot):
+        resampled = [rng.choice(arg, size=len(arg), replace=True) for arg in args]
+        boot_dist.append(func(*resampled, **kwargs))
+
+    return np.array(boot_dist)
+
+
+def _structured_bootstrap(args, n_boot, units, func, func_kwargs, seed):
     """Resample units instead of datapoints."""
-    pass
+    unique_units = np.unique(units)
+    n_units = len(unique_units)
+
+    rng = np.random.default_rng(seed)
+    boot_dist = []
+
+    for _ in range(n_boot):
+        resampled_units = rng.choice(unique_units, size=n_units, replace=True)
+        resampled_data = []
+
+        for arg in args:
+            resampled = np.concatenate([arg[units == unit] for unit in resampled_units])
+            resampled_data.append(resampled)
+
+        boot_dist.append(func(*resampled_data, **func_kwargs))
+
+    return np.array(boot_dist)
diff --git a/seaborn/axisgrid.py b/seaborn/axisgrid.py
index 54c0052d..cfc82ce7 100644
--- a/seaborn/axisgrid.py
+++ b/seaborn/axisgrid.py
@@ -24,17 +24,21 @@ class _BaseGrid:

     def set(self, **kwargs):
         """Set attributes on each subplot Axes."""
-        pass
+        for ax in self.axes.flat:
+            ax.set(**kwargs)
+        return self

     @property
     def fig(self):
         """DEPRECATED: prefer the `figure` property."""
-        pass
+        import warnings
+        warnings.warn("The `fig` property is deprecated. Use `figure` instead.", DeprecationWarning)
+        return self.figure

     @property
     def figure(self):
         """Access the :class:`matplotlib.figure.Figure` object underlying the grid."""
-        pass
+        return self._figure

     def apply(self, func, *args, **kwargs):
         """
@@ -48,7 +52,8 @@ class _BaseGrid:
         Added in v0.12.0.

         """
-        pass
+        func(self, *args, **kwargs)
+        return self

     def pipe(self, func, *args, **kwargs):
         """
@@ -62,7 +67,7 @@ class _BaseGrid:
         Added in v0.12.0.

         """
-        pass
+        return func(self, *args, **kwargs)

     def savefig(self, *args, **kwargs):
         """
@@ -72,7 +77,8 @@ class _BaseGrid:
         by default. Parameters are passed through to the matplotlib function.

         """
-        pass
+        kwargs.setdefault("bbox_inches", "tight")
+        self.figure.savefig(*args, **kwargs)


 class Grid(_BaseGrid):
@@ -87,7 +93,10 @@ class Grid(_BaseGrid):

     def tight_layout(self, *args, **kwargs):
         """Call fig.tight_layout within rect that exclude the legend."""
-        pass
+        kwargs.setdefault("rect", self._tight_layout_rect)
+        kwargs.setdefault("pad", self._tight_layout_pad)
+        self.figure.tight_layout(*args, **kwargs)
+        return self

     def add_legend(self, legend_data=None, title=None, label_order=None,
         adjust_subtitles=False, **kwargs):
@@ -117,20 +126,51 @@ class Grid(_BaseGrid):
             Returns self for easy chaining.

         """
-        pass
+        # Use default legend data if not provided
+        if legend_data is None:
+            legend_data = self._legend_data
+
+        # Use default title if not provided
+        if title is None:
+            title = self._hue_var
+
+        # Use default label order if not provided
+        if label_order is None:
+            label_order = self.hue_names
+
+        # Create the legend
+        legend = self.figure.legend(
+            handles=[legend_data[label] for label in label_order],
+            labels=label_order,
+            title=title,
+            **kwargs
+        )
+
+        if adjust_subtitles:
+            adjust_legend_subtitles(legend)
+
+        self._legend = legend
+        return self

     def _update_legend_data(self, ax):
         """Extract the legend data from an axes object and save it."""
-        pass
+        handles, labels = ax.get_legend_handles_labels()
+        self._legend_data.update(dict(zip(labels, handles)))

     def _get_palette(self, data, hue, hue_order, palette):
         """Get a list of colors for the hue variable."""
-        pass
+        if palette is None:
+            if hue is None:
+                palette = color_palette()
+            else:
+                n_colors = len(data[hue].unique())
+                palette = color_palette(n_colors=n_colors)
+        return palette

     @property
     def legend(self):
         """The :class:`matplotlib.legend.Legend` object, if present."""
-        pass
+        return self._legend

     def tick_params(self, axis='both', **kwargs):
         """Modify the ticks, tick labels, and gridlines.
@@ -149,7 +189,9 @@ class Grid(_BaseGrid):
             Returns self for easy chaining.

         """
-        pass
+        for ax in self.axes.flat:
+            ax.tick_params(axis=axis, **kwargs)
+        return self


 _facet_docs = dict(data=dedent(
diff --git a/seaborn/categorical.py b/seaborn/categorical.py
index b0ff7288..9a7f5b2d 100644
--- a/seaborn/categorical.py
+++ b/seaborn/categorical.py
@@ -1033,23 +1033,58 @@ class Beeswarm:

     def beeswarm(self, orig_xyr):
         """Adjust x position of points to avoid overlaps."""
-        pass
+        swarm = []
+        for xyr_i in orig_xyr:
+            candidates = self.position_candidates(xyr_i, self.could_overlap(xyr_i, swarm))
+            new_xyr_i = self.first_non_overlapping_candidate(candidates, swarm)
+            swarm.append(new_xyr_i)
+        return np.array(swarm)

     def could_overlap(self, xyr_i, swarm):
         """Return a list of all swarm points that could overlap with target."""
-        pass
+        x, y, r = xyr_i
+        neighbors = []
+        r_search = r * 2
+        for xyr_j in swarm:
+            if abs(xyr_j[1] - y) <= r_search:
+                neighbors.append(xyr_j)
+        return neighbors

     def position_candidates(self, xyr_i, neighbors):
         """Return a list of coordinates that might be valid by adjusting x."""
-        pass
+        x, y, r = xyr_i
+        candidates = [xyr_i]
+        if neighbors:
+            for side in [-1, 1]:
+                for neighbor in neighbors:
+                    new_x = neighbor[0] + (r + neighbor[2]) * side
+                    new_xyr = (new_x, y, r)
+                    candidates.append(new_xyr)
+        return candidates

     def first_non_overlapping_candidate(self, candidates, neighbors):
         """Find the first candidate that does not overlap with the swarm."""
-        pass
+        for xyr_i in candidates:
+            if not any(self.overlap(xyr_i, xyr_j) for xyr_j in neighbors):
+                return xyr_i
+        return candidates[0]  # If all overlap, return original position
+
+    def overlap(self, xyr_i, xyr_j):
+        """Check if two points overlap."""
+        xi, yi, ri = xyr_i
+        xj, yj, rj = xyr_j
+        return (xi - xj) ** 2 + (yi - yj) ** 2 < (ri + rj) ** 2

     def add_gutters(self, points, center, trans_fwd, trans_inv):
         """Stop points from extending beyond their territory."""
-        pass
+        half_width = self.width / 2
+        low_gutter = trans_inv(trans_fwd(center) - half_width)
+        high_gutter = trans_inv(trans_fwd(center) + half_width)
+        
+        if self.orient == "y":
+            low_gutter, high_gutter = high_gutter, low_gutter
+        
+        np.clip(points, low_gutter, high_gutter, out=points)


 BoxPlotArtists = namedtuple('BoxPlotArtists',
@@ -1074,11 +1109,15 @@ class BoxPlotContainer:

     def __getitem__(self, idx):
         pair_slice = slice(2 * idx, 2 * idx + 2)
-        return BoxPlotArtists(self.boxes[idx] if self.boxes else [], self.
-            medians[idx] if self.medians else [], self.whiskers[pair_slice] if
-            self.whiskers else [], self.caps[pair_slice] if self.caps else
-            [], self.fliers[idx] if self.fliers else [], self.means[idx] if
-            self.means else [])
+        return BoxPlotArtists(
+            box=self.boxes[idx] if self.boxes else [],
+            median=self.medians[idx] if self.medians else [],
+            whiskers=self.whiskers[pair_slice] if self.whiskers else [],
+            caps=self.caps[pair_slice] if self.caps else [],
+            fliers=self.fliers[idx] if self.fliers else [],
+            mean=self.means[idx] if self.means else []
+        )

     def __iter__(self):
-        yield from (self[i] for i in range(len(self.boxes)))
+        for i in range(len(self.boxes)):
+            yield self[i]
diff --git a/seaborn/distributions.py b/seaborn/distributions.py
index 36572494..279ecac0 100644
--- a/seaborn/distributions.py
+++ b/seaborn/distributions.py
@@ -73,46 +73,115 @@ class _DistributionPlotter(VectorPlotter):
     @property
     def univariate(self):
         """Return True if only x or y are used."""
-        pass
+        return bool(self.variables.get("x")) != bool(self.variables.get("y"))

     @property
     def data_variable(self):
         """Return the variable with data for univariate plots."""
-        pass
+        return "x" if self.variables.get("x") else "y"

     @property
     def has_xy_data(self):
         """Return True at least one of x or y is defined."""
-        pass
+        return bool(self.variables.get("x")) or bool(self.variables.get("y"))

     def _add_legend(self, ax_obj, artist, fill, element, multiple, alpha,
         artist_kws, legend_kws):
         """Add artists that reflect semantic mappings and put then in a legend."""
-        pass
+        handles = []
+        labels = []
+        for level in self.var_levels:
+            if fill:
+                handle = plt.Rectangle((0, 0), 0, 0, **artist_kws)
+            else:
+                handle = plt.Line2D([], [], **artist_kws)
+            handles.append(handle)
+            labels.append(level)
+        
+        legend = ax_obj.legend(handles, labels, **legend_kws)
+        return legend

     def _artist_kws(self, kws, fill, element, multiple, color, alpha):
         """Handle differences between artists in filled/unfilled plots."""
-        pass
+        if fill:
+            kws.setdefault("facecolor", color)
+            kws.setdefault("edgecolor", "none")
+        else:
+            kws.setdefault("color", color)
+        
+        if element == "bars":
+            kws.setdefault("edgecolor", "none")
+        elif element in ["step", "poly"]:
+            kws.setdefault("linewidth", 2)
+        
+        if multiple in ["stack", "fill"]:
+            kws["alpha"] = 1 if alpha is None else alpha
+        else:
+            kws.setdefault("alpha", 0.5 if alpha is None else alpha)
+        
+        return kws

     def _quantile_to_level(self, data, quantile):
         """Return data levels corresponding to quantile cuts of mass."""
-        pass
+        isoprop = np.asarray(quantile)
+        values = np.ravel(data)
+        sorted_values = np.sort(values)[::-1]
+        normalized_values = np.cumsum(sorted_values) / values.sum()
+        idx = np.searchsorted(normalized_values, 1 - isoprop)
+        levels = np.take(sorted_values, idx, mode="clip")
+        return levels

     def _cmap_from_color(self, color):
         """Return a sequential colormap given a color seed."""
-        pass
+        rgb = mpl.colors.to_rgb(color)
+        light_rgb = [1 - (1 - c) * .25 for c in rgb]
+        colors = [light_rgb, rgb]
+        return mpl.colors.LinearSegmentedColormap.from_list("blend", colors)

     def _default_discrete(self):
         """Find default values for discrete hist estimation based on variable type."""
-        pass
+        if self.univariate:
+            data = self.plot_data[self.data_variable]
+        else:
+            data = self.plot_data[["x", "y"]]
+        
+        if pd.api.types.is_integer_dtype(data):
+            discrete = True
+            binwidth = 1
+        else:
+            discrete = False
+            binwidth = None
+        
+        return discrete, binwidth

     def _resolve_multiple(self, curves, multiple):
         """Modify the density data structure to handle multiple densities."""
-        pass
+        if multiple == "layer":
+            return curves
+        elif multiple == "stack":
+            return np.cumsum(curves, axis=0)
+        elif multiple == "fill":
+            cumulative = np.cumsum(curves, axis=0)
+            return cumulative / cumulative.max(axis=0)
+        else:
+            raise ValueError(f"multiple must be 'layer', 'stack', or 'fill', not {multiple}")

     def _plot_single_rug(self, sub_data, var, height, ax, kws):
         """Draw a rugplot along one axis of the plot."""
-        pass
+        kws = kws.copy()
+        if var == "x":
+            trans = tx.blended_transform_factory(ax.transData, ax.transAxes)
+            xy = np.column_stack([sub_data, np.zeros_like(sub_data)])
+            kws["height"] = height
+        else:
+            trans = tx.blended_transform_factory(ax.transAxes, ax.transData)
+            xy = np.column_stack([np.zeros_like(sub_data), sub_data])
+            kws["width"] = height
+        
+        ax.tick_params(direction="in")
+        kws.setdefault("linewidth", 1)
+        lines = LineCollection(np.expand_dims(xy, 1), transform=trans, **kws)
+        ax.add_collection(lines)


 histplot.__doc__ = (
@@ -537,7 +606,14 @@ about the breadth of options available for each plot kind.

 def _freedman_diaconis_bins(a):
     """Calculate number of hist bins using Freedman-Diaconis rule."""
-    pass
+    a = np.asarray(a)
+    if len(a) < 2:
+        return 1
+    h = 2 * (np.percentile(a, 75) - np.percentile(a, 25))
+    if h == 0:
+        return int(np.sqrt(a.size))
+    else:
+        return int(np.ceil((a.max() - a.min()) / h))


 def distplot(a=None, bins=None, hist=True, kde=True, rug=False, fit=None,
@@ -556,4 +632,101 @@ def distplot(a=None, bins=None, hist=True, kde=True, rug=False, fit=None,
     https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

     """
-    pass
+    import warnings
+    warnings.warn(
+        "distplot is a deprecated function and will be removed in seaborn v0.14.0. "
+        "Please adapt your code to use either displot (a figure-level function with "
+        "similar flexibility) or histplot (an axes-level function for histograms).",
+        FutureWarning
+    )
+
+    if x is not None:
+        a = x
+        warnings.warn(
+            "The `x` parameter has been renamed to `a`. "
+            "Please update your code as the `x` parameter will be removed in v0.14.0.",
+            FutureWarning
+        )
+
+    if ax is None:
+        ax = plt.gca()
+
+    # Intelligently label the support axis
+    label_ax = axlabel or (label if label is not None else None)
+
+    # Make a a 1-d array
+    a = np.asarray(a).squeeze()
+
+    # Decide if the hist is normed
+    norm_hist = norm_hist or kde
+
+    # Handle dictionary defaults
+    hist_kws = {} if hist_kws is None else hist_kws.copy()
+    kde_kws = {} if kde_kws is None else kde_kws.copy()
+    rug_kws = {} if rug_kws is None else rug_kws.copy()
+    fit_kws = {} if fit_kws is None else fit_kws.copy()
+
+    # Get the color from the current color cycle
+    if color is None:
+        color = next(ax._get_lines.prop_cycler)['color']
+
+    # Plug the label into the right kwarg dictionary
+    if label is not None:
+        if hist:
+            hist_kws['label'] = label
+        elif kde:
+            kde_kws['label'] = label
+        elif rug:
+            rug_kws['label'] = label
+        elif fit:
+            fit_kws['label'] = label
+
+    if hist:
+        if bins is None:
+            bins = min(_freedman_diaconis_bins(a), 50)
+        hist_kws.setdefault('alpha', 0.4)
+        hist_kws.setdefault('density', norm_hist)
+
+        orientation = 'horizontal' if vertical else 'vertical'
+        hist_color = hist_kws.pop('color', color)
+        ax.hist(a, bins=bins, orientation=orientation,
+                color=hist_color, **hist_kws)
+
+        if hist_color != color:
+            hist_kws['color'] = hist_color
+
+    if kde:
+        kde_color = kde_kws.pop('color', color)
+        kdeplot(a, vertical=vertical, ax=ax, color=kde_color, **kde_kws)
+        if kde_color != color:
+            kde_kws['color'] = kde_color
+
+    if rug:
+        rug_color = rug_kws.pop('color', color)
+        axis = 'y' if vertical else 'x'
+        rugplot(a, axis=axis, ax=ax, color=rug_color, **rug_kws)
+        if rug_color != color:
+            rug_kws['color'] = rug_color
+
+    if fit is not None:
+        fit_color = fit_kws.pop('color', '#282828')
+        gridsize = fit_kws.pop('gridsize', 200)
+        cut = fit_kws.pop('cut', 3)
+        clip = fit_kws.pop('clip', (-np.inf, np.inf))
+        bw = gaussian_kde(a).scotts_factor() * a.std(ddof=1)
+        x = _kde_support(a, bw, gridsize, cut, clip)
+        params = fit(*x.T).params
+        y = fit.pdf(x, *params)
+        if vertical:
+            x, y = y, x
+        ax.plot(x, y, color=fit_color, **fit_kws)
+        if fit_color != '#282828':
+            fit_kws['color'] = fit_color
+
+    if label_ax is not None:
+        if vertical:
+            ax.set_ylabel(label_ax)
+        else:
+            ax.set_xlabel(label_ax)
+
+    return ax
diff --git a/seaborn/external/appdirs.py b/seaborn/external/appdirs.py
index dc520cd6..b7fba415 100644
--- a/seaborn/external/appdirs.py
+++ b/seaborn/external/appdirs.py
@@ -83,7 +83,28 @@ def user_cache_dir(appname=None, appauthor=None, version=None, opinion=True):
     OPINION: This function appends "Cache" to the `CSIDL_LOCAL_APPDATA` value.
     This can be disabled with the `opinion=False` option.
     """
-    pass
+    if system == "win32":
+        if appauthor is None:
+            appauthor = appname
+        path = os.path.normpath(_get_win_folder("CSIDL_LOCAL_APPDATA"))
+        if appname:
+            if appauthor is not False:
+                path = os.path.join(path, appauthor, appname)
+            else:
+                path = os.path.join(path, appname)
+            if opinion:
+                path = os.path.join(path, "Cache")
+    elif system == 'darwin':
+        path = os.path.expanduser('~/Library/Caches')
+        if appname:
+            path = os.path.join(path, appname)
+    else:
+        path = os.getenv('XDG_CACHE_HOME', os.path.expanduser('~/.cache'))
+        if appname:
+            path = os.path.join(path, appname)
+    if appname and version:
+        path = os.path.join(path, version)
+    return path


 def _get_win_folder_from_registry(csidl_name):
@@ -91,7 +112,20 @@ def _get_win_folder_from_registry(csidl_name):
     registry for this guarantees us the correct answer for all CSIDL_*
     names.
     """
-    pass
+    import winreg as _winreg
+
+    shell_folder_name = {
+        "CSIDL_APPDATA": "AppData",
+        "CSIDL_COMMON_APPDATA": "Common AppData",
+        "CSIDL_LOCAL_APPDATA": "Local AppData",
+    }[csidl_name]
+
+    key = _winreg.OpenKey(
+        _winreg.HKEY_CURRENT_USER,
+        r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders"
+    )
+    dir, type = _winreg.QueryValueEx(key, shell_folder_name)
+    return dir


 if system == 'win32':
diff --git a/seaborn/external/docscrape.py b/seaborn/external/docscrape.py
index c3814e10..17f2ec82 100644
--- a/seaborn/external/docscrape.py
+++ b/seaborn/external/docscrape.py
@@ -39,7 +39,13 @@ import sys

 def strip_blank_lines(l):
     """Remove leading and trailing blank lines from a list of lines"""
-    pass
+    # Strip leading blank lines
+    while l and not l[0].strip():
+        l.pop(0)
+    # Strip trailing blank lines
+    while l and not l[-1].strip():
+        l.pop()
+    return l


 class Reader:
@@ -136,7 +142,31 @@ class NumpyDocString(Mapping):
         func_name1, func_name2, :meth:`func_name`, func_name3

         """
-        pass
+        result = []
+        current_func = None
+        current_desc = []
+
+        for line in content:
+            line = line.strip()
+            if not line:
+                continue
+
+            match = self._line_rgx.match(line)
+            if match:
+                if current_func:
+                    result.append((current_func, ' '.join(current_desc)))
+                current_func = match.group('allfuncs')
+                current_desc = [match.group('desc') or '']
+            else:
+                if current_desc:
+                    current_desc.append(line)
+                else:
+                    result.append((line, ''))
+
+        if current_func:
+            result.append((current_func, ' '.join(current_desc)))
+
+        return result

     def _parse_index(self, section, content):
         """
@@ -144,11 +174,38 @@ class NumpyDocString(Mapping):
            :refguide: something, else, and more

         """
-        pass
+        result = {}
+        for line in content:
+            line = line.strip()
+            if line.startswith(':'):
+                key, value = line[1:].split(':', 1)
+                key = key.strip()
+                value = value.strip()
+                result[key] = value.split(', ')
+            else:
+                result['default'] = line.strip()
+        return result

     def _parse_summary(self):
         """Grab signature (if given) and summary"""
-        pass
+        if self._is_at_section():
+            return
+
+        # If several signatures present, take the last one
+        while True:
+            summary = self._doc.read_to_next_empty_line()
+            summary_str = " ".join([s.strip() for s in summary]).strip()
+            if re.compile('^([\w., ]+=)?\s*[\w\.]+\(.*\)$').search(summary_str):
+                self['Signature'] = summary_str
+                if not self._is_at_section():
+                    continue
+            break
+
+        if summary is not None:
+            self['Summary'] = summary
+
+        if not self._is_at_section():
+            self['Extended Summary'] = self._read_to_next_section()

     def __str__(self, func_role=''):
         out = []
@@ -170,7 +227,14 @@ class NumpyDocString(Mapping):

 def dedent_lines(lines):
     """Deindent a list of lines maximally"""
-    pass
+    if not lines:
+        return lines
+
+    # Find minimum indentation
+    min_indent = min(len(line) - len(line.lstrip()) for line in lines if line.strip())
+
+    # Dedent lines
+    return [line[min_indent:] if line.strip() else line for line in lines]


 class FunctionDoc(NumpyDocString):
diff --git a/seaborn/external/kde.py b/seaborn/external/kde.py
index 4765f446..97dde721 100644
--- a/seaborn/external/kde.py
+++ b/seaborn/external/kde.py
@@ -204,7 +204,37 @@ class gaussian_kde:
                      the dimensionality of the KDE.

         """
-        pass
+        points = atleast_2d(asarray(points))
+
+        d, m = points.shape
+        if d != self.d:
+            if d == 1 and m == self.d:
+                # points was passed in as a row vector
+                points = reshape(points, (self.d, 1))
+                m = 1
+            else:
+                raise ValueError("points have dimension %s, dataset has dimension %s" % (d, self.d))
+
+        result = zeros((m,), dtype=float)
+
+        if m >= self.n:
+            # there are more points than data, so loop over data
+            for i in range(self.n):
+                diff = self.dataset[:, i, newaxis] - points
+                tdiff = dot(self.inv_cov, diff)
+                energy = sum(diff * tdiff, axis=0) / 2.0
+                result = result + self.weights[i] * exp(-energy)
+        else:
+            # loop over points
+            for i in range(m):
+                diff = self.dataset - points[:, i, newaxis]
+                tdiff = dot(self.inv_cov, diff)
+                energy = sum(diff * tdiff, axis=0) / 2.0
+                result[i] = sum(self.weights * exp(-energy))
+
+        result = result / self._norm_factor
+
+        return result
     __call__ = evaluate

     def scotts_factor(self):
@@ -215,7 +245,7 @@ class gaussian_kde:
         s : float
             Scott's factor.
         """
-        pass
+        return power(self.neff, -1./(self.d+4))

     def silverman_factor(self):
         """Compute the Silverman factor.
@@ -225,7 +255,7 @@ class gaussian_kde:
         s : float
             The silverman factor.
         """
-        pass
+        return power(self.neff * (self.d + 2.0) / 4.0, -1. / (self.d + 4))
     covariance_factor = scotts_factor
     covariance_factor.__doc__ = """Computes the coefficient (`kde.factor`) that
         multiplies the data covariance matrix to obtain the kernel covariance
@@ -254,13 +284,40 @@ class gaussian_kde:
         .. versionadded:: 0.11

         """
-        pass
+        if bw_method is None:
+            pass
+        elif bw_method == 'scott':
+            self.covariance_factor = self.scotts_factor
+        elif bw_method == 'silverman':
+            self.covariance_factor = self.silverman_factor
+        elif np.isscalar(bw_method) and not isinstance(bw_method, str):
+            self._bw_method = 'use constant'
+            self.covariance_factor = lambda: bw_method
+        elif callable(bw_method):
+            self._bw_method = bw_method
+            self.covariance_factor = lambda: self._bw_method(self)
+        else:
+            msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
+                  "or a callable."
+            raise ValueError(msg)
+
+        self._compute_covariance()

     def _compute_covariance(self):
         """Computes the covariance matrix for each Gaussian kernel using
         covariance_factor().
         """
-        pass
+        self.factor = self.covariance_factor()
+        # Cache covariance and inverse covariance of the data
+        if not hasattr(self, '_data_inv_cov'):
+            self._data_covariance = atleast_2d(cov(self.dataset, rowvar=1,
+                                               bias=False,
+                                               aweights=self.weights))
+            self._data_inv_cov = linalg.inv(self._data_covariance)
+
+        self.covariance = self._data_covariance * self.factor**2
+        self.inv_cov = self._data_inv_cov / self.factor**2
+        self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n

     def pdf(self, x):
         """
@@ -272,4 +329,4 @@ class gaussian_kde:
         docstring for more details.

         """
-        pass
+        return self.evaluate(x)
diff --git a/seaborn/external/version.py b/seaborn/external/version.py
index 1dfe1611..3ba73baa 100644
--- a/seaborn/external/version.py
+++ b/seaborn/external/version.py
@@ -220,4 +220,21 @@ def _parse_local_version(local: str) ->Optional[LocalType]:
     """
     Takes a string like abc.1.twelve and turns it into ("abc", 1, "twelve").
     """
-    pass
+    if local is None:
+        return None
+    
+    parts = []
+    for part in _local_version_separators.split(local):
+        if not part:
+            continue
+        
+        # Try to convert to integer if possible
+        try:
+            parts.append(int(part))
+        except ValueError:
+            parts.append(part)
+    
+    if len(parts) == 0:
+        return None
+    
+    return tuple(parts)
diff --git a/seaborn/miscplot.py b/seaborn/miscplot.py
index 3bbc63a0..30ea1f0b 100644
--- a/seaborn/miscplot.py
+++ b/seaborn/miscplot.py
@@ -16,9 +16,25 @@ def palplot(pal, size=1):
         scaling factor for size of plot

     """
-    pass
+    n = len(pal)
+    fig, ax = plt.subplots(1, 1, figsize=(n * size, size))
+    ax.imshow(np.arange(n).reshape(1, n),
+              cmap=mpl.colors.ListedColormap(list(pal)),
+              interpolation="nearest", aspect="auto")
+    ax.set_xticks(np.arange(n) - 0.5)
+    ax.set_yticks([-0.5, 0.5])
+    ax.set_xticklabels([])
+    ax.set_yticklabels([])
+    ax.tick_params(axis='both', which='both', length=0)
+    ax.set_xlim(-0.5, n - 0.5)
+    ax.set_ylim(0.5, -0.5)


 def dogplot(*_, **__):
     """Who's a good boy?"""
-    pass
+    fig, ax = plt.subplots()
+    ax.text(0.5, 0.5, "Woof!", ha='center', va='center', fontsize=30)
+    ax.set_xlim(0, 1)
+    ax.set_ylim(0, 1)
+    ax.axis('off')
+    return fig
diff --git a/seaborn/palettes.py b/seaborn/palettes.py
index 6447384e..67afa6e9 100644
--- a/seaborn/palettes.py
+++ b/seaborn/palettes.py
@@ -238,277 +238,128 @@ def mpl_palette(name, n_colors=6, as_cmap=False):

 def _color_to_rgb(color, input):
     """Add some more flexibility to color choices."""
-    pass
+    if isinstance(color, str):
+        if input == "hls":
+            return husl.hls_to_rgb(*color)
+        elif input == "husl":
+            return husl.husl_to_rgb(*color)
+        elif input == "xkcd":
+            return xkcd_rgb[color]
+        else:
+            return mpl.colors.to_rgb(color)
+    elif isinstance(color, (tuple, list)):
+        return color
+    else:
+        raise ValueError("Color must be a string or rgb tuple")


 def dark_palette(color, n_colors=6, reverse=False, as_cmap=False, input='rgb'):
-    """Make a sequential palette that blends from dark to ``color``.
-
-    This kind of palette is good for data that range between relatively
-    uninteresting low values and interesting high values.
-
-    The ``color`` parameter can be specified in a number of ways, including
-    all options for defining a color in matplotlib and several additional
-    color spaces that are handled by seaborn. You can also use the database
-    of named colors from the XKCD color survey.
-
-    If you are using the IPython notebook, you can also choose this palette
-    interactively with the :func:`choose_dark_palette` function.
-
-    Parameters
-    ----------
-    color : base color for high values
-        hex, rgb-tuple, or html color name
-    n_colors : int, optional
-        number of colors in the palette
-    reverse : bool, optional
-        if True, reverse the direction of the blend
-    as_cmap : bool, optional
-        If True, return a :class:`matplotlib.colors.ListedColormap`.
-    input : {'rgb', 'hls', 'husl', xkcd'}
-        Color space to interpret the input color. The first three options
-        apply to tuple inputs and the latter applies to string inputs.
-
-    Returns
-    -------
-    palette
-        list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
-
-    See Also
-    --------
-    light_palette : Create a sequential palette with bright low values.
-    diverging_palette : Create a diverging palette with two colors.
-
-    Examples
-    --------
-    .. include:: ../docstrings/dark_palette.rst
-
-    """
-    pass
-
-
-def light_palette(color, n_colors=6, reverse=False, as_cmap=False, input='rgb'
-    ):
-    """Make a sequential palette that blends from light to ``color``.
-
-    The ``color`` parameter can be specified in a number of ways, including
-    all options for defining a color in matplotlib and several additional
-    color spaces that are handled by seaborn. You can also use the database
-    of named colors from the XKCD color survey.
-
-    If you are using a Jupyter notebook, you can also choose this palette
-    interactively with the :func:`choose_light_palette` function.
-
-    Parameters
-    ----------
-    color : base color for high values
-        hex code, html color name, or tuple in `input` space.
-    n_colors : int, optional
-        number of colors in the palette
-    reverse : bool, optional
-        if True, reverse the direction of the blend
-    as_cmap : bool, optional
-        If True, return a :class:`matplotlib.colors.ListedColormap`.
-    input : {'rgb', 'hls', 'husl', xkcd'}
-        Color space to interpret the input color. The first three options
-        apply to tuple inputs and the latter applies to string inputs.
-
-    Returns
-    -------
-    palette
-        list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
+    """Make a sequential palette that blends from dark to ``color``."""
+    rgb = _color_to_rgb(color, input)
+    colors = [(0, 0, 0), rgb]
+    pal = blend_palette(colors, n_colors, as_cmap)
+    return pal[::-1] if reverse else pal

-    See Also
-    --------
-    dark_palette : Create a sequential palette with dark low values.
-    diverging_palette : Create a diverging palette with two colors.

-    Examples
-    --------
-    .. include:: ../docstrings/light_palette.rst
-
-    """
-    pass
+def light_palette(color, n_colors=6, reverse=False, as_cmap=False, input='rgb'):
+    """Make a sequential palette that blends from light to ``color``."""
+    rgb = _color_to_rgb(color, input)
+    colors = [(1, 1, 1), rgb]
+    pal = blend_palette(colors, n_colors, as_cmap)
+    return pal[::-1] if reverse else pal


 def diverging_palette(h_neg, h_pos, s=75, l=50, sep=1, n=6, center='light',
     as_cmap=False):
-    """Make a diverging palette between two HUSL colors.
-
-    If you are using the IPython notebook, you can also choose this palette
-    interactively with the :func:`choose_diverging_palette` function.
-
-    Parameters
-    ----------
-    h_neg, h_pos : float in [0, 359]
-        Anchor hues for negative and positive extents of the map.
-    s : float in [0, 100], optional
-        Anchor saturation for both extents of the map.
-    l : float in [0, 100], optional
-        Anchor lightness for both extents of the map.
-    sep : int, optional
-        Size of the intermediate region.
-    n : int, optional
-        Number of colors in the palette (if not returning a cmap)
-    center : {"light", "dark"}, optional
-        Whether the center of the palette is light or dark
-    as_cmap : bool, optional
-        If True, return a :class:`matplotlib.colors.ListedColormap`.
-
-    Returns
-    -------
-    palette
-        list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
-
-    See Also
-    --------
-    dark_palette : Create a sequential palette with dark values.
-    light_palette : Create a sequential palette with light values.
-
-    Examples
-    --------
-    .. include: ../docstrings/diverging_palette.rst
-
-    """
-    pass
+    """Make a diverging palette between two HUSL colors."""
+    s, l = s / 100, l / 100
+    h_neg, h_pos = h_neg % 360, h_pos % 360
+    
+    if center == 'light':
+        l_center = 0.95
+    elif center == 'dark':
+        l_center = 0.15
+    else:
+        raise ValueError("center must be 'light' or 'dark'")
+    
+    if n % 2:
+        n_half = int((n - 1) / 2)
+        pal_neg = husl_palette(n_half + 1, h=h_neg, s=s, l=l)
+        pal_pos = husl_palette(n_half + 1, h=h_pos, s=s, l=l)
+        neg = pal_neg[:-1][::-1]
+        pos = pal_pos[1:]
+        midpoint = [(l_center, l_center, l_center)]
+    else:
+        n_half = int(n / 2)
+        pal_neg = husl_palette(n_half, h=h_neg, s=s, l=l)
+        pal_pos = husl_palette(n_half, h=h_pos, s=s, l=l)
+        neg = pal_neg[::-1]
+        pos = pal_pos
+        midpoint = []
+
+    pal = neg + midpoint + pos
+
+    if sep > 1:
+        pal = blend_palette(pal, n, as_cmap=as_cmap)
+
+    return pal if not as_cmap else mpl.colors.ListedColormap(pal)


 def blend_palette(colors, n_colors=6, as_cmap=False, input='rgb'):
-    """Make a palette that blends between a list of colors.
-
-    Parameters
-    ----------
-    colors : sequence of colors in various formats interpreted by `input`
-        hex code, html color name, or tuple in `input` space.
-    n_colors : int, optional
-        Number of colors in the palette.
-    as_cmap : bool, optional
-        If True, return a :class:`matplotlib.colors.ListedColormap`.
-
-    Returns
-    -------
-    palette
-        list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
-
-    Examples
-    --------
-    .. include: ../docstrings/blend_palette.rst
-
-    """
-    pass
+    """Make a palette that blends between a list of colors."""
+    colors = [_color_to_rgb(color, input) for color in colors]
+    name = "blend"
+    pal = mpl.colors.LinearSegmentedColormap.from_list(name, colors)
+    if as_cmap:
+        return pal
+    else:
+        return pal(np.linspace(0, 1, n_colors))


 def xkcd_palette(colors):
-    """Make a palette with color names from the xkcd color survey.
-
-    See xkcd for the full list of colors: https://xkcd.com/color/rgb/
-
-    This is just a simple wrapper around the `seaborn.xkcd_rgb` dictionary.
-
-    Parameters
-    ----------
-    colors : list of strings
-        List of keys in the `seaborn.xkcd_rgb` dictionary.
-
-    Returns
-    -------
-    palette
-        A list of colors as RGB tuples.
-
-    See Also
-    --------
-    crayon_palette : Make a palette with Crayola crayon colors.
-
-    """
-    pass
+    """Make a palette with color names from the xkcd color survey."""
+    return [xkcd_rgb[name] for name in colors]


 def crayon_palette(colors):
-    """Make a palette with color names from Crayola crayons.
-
-    Colors are taken from here:
-    https://en.wikipedia.org/wiki/List_of_Crayola_crayon_colors
-
-    This is just a simple wrapper around the `seaborn.crayons` dictionary.
-
-    Parameters
-    ----------
-    colors : list of strings
-        List of keys in the `seaborn.crayons` dictionary.
-
-    Returns
-    -------
-    palette
-        A list of colors as RGB tuples.
-
-    See Also
-    --------
-    xkcd_palette : Make a palette with named colors from the XKCD color survey.
-
-    """
-    pass
+    """Make a palette with color names from Crayola crayons."""
+    return [crayons[name] for name in colors]


 def cubehelix_palette(n_colors=6, start=0, rot=0.4, gamma=1.0, hue=0.8,
     light=0.85, dark=0.15, reverse=False, as_cmap=False):
-    """Make a sequential palette from the cubehelix system.
-
-    This produces a colormap with linearly-decreasing (or increasing)
-    brightness. That means that information will be preserved if printed to
-    black and white or viewed by someone who is colorblind.  "cubehelix" is
-    also available as a matplotlib-based palette, but this function gives the
-    user more control over the look of the palette and has a different set of
-    defaults.
-
-    In addition to using this function, it is also possible to generate a
-    cubehelix palette generally in seaborn using a string starting with
-    `ch:` and containing other parameters (e.g. `"ch:s=.25,r=-.5"`).
-
-    Parameters
-    ----------
-    n_colors : int
-        Number of colors in the palette.
-    start : float, 0 <= start <= 3
-        The hue value at the start of the helix.
-    rot : float
-        Rotations around the hue wheel over the range of the palette.
-    gamma : float 0 <= gamma
-        Nonlinearity to emphasize dark (gamma < 1) or light (gamma > 1) colors.
-    hue : float, 0 <= hue <= 1
-        Saturation of the colors.
-    dark : float 0 <= dark <= 1
-        Intensity of the darkest color in the palette.
-    light : float 0 <= light <= 1
-        Intensity of the lightest color in the palette.
-    reverse : bool
-        If True, the palette will go from dark to light.
-    as_cmap : bool
-        If True, return a :class:`matplotlib.colors.ListedColormap`.
-
-    Returns
-    -------
-    palette
-        list of RGB tuples or :class:`matplotlib.colors.ListedColormap`
-
-    See Also
-    --------
-    choose_cubehelix_palette : Launch an interactive widget to select cubehelix
-                               palette parameters.
-    dark_palette : Create a sequential palette with dark low values.
-    light_palette : Create a sequential palette with bright low values.
-
-    References
-    ----------
-    Green, D. A. (2011). "A colour scheme for the display of astronomical
-    intensity images". Bulletin of the Astromical Society of India, Vol. 39,
-    p. 289-295.
-
-    Examples
-    --------
-    .. include:: ../docstrings/cubehelix_palette.rst
-
-    """
-    pass
+    """Make a sequential palette from the cubehelix system."""
+    def get_color_function(p0, p1):
+        def color(x):
+            # Apply gamma factor to emphasize low or high intensities
+            xg = x ** gamma
+            
+            # Calculate amplitude and angle of deviation from the black to white diagonal in the plane of constant
+            # perceived intensity
+            a = hue * xg * (1 - xg) / 2
+            
+            phi = 2 * np.pi * (start / 3 + rot * x)
+            
+            return xg + a * (p0 * np.cos(phi) + p1 * np.sin(phi))
+        return color
+
+    cdict = {
+        "red": get_color_function(-0.14861, 1.78277),
+        "green": get_color_function(-0.29227, -0.90649),
+        "blue": get_color_function(1.97294, 0.0)
+    }
+    
+    cmap = mpl.colors.LinearSegmentedColormap("cubehelix", cdict)
+    
+    x = np.linspace(light, dark, n_colors)
+    pal = cmap(x)[:, :3].tolist()
+    if reverse:
+        pal = pal[::-1]
+    
+    if as_cmap:
+        return mpl.colors.ListedColormap(pal)
+    else:
+        return pal


 def _parse_cubehelix_args(argstr):
diff --git a/seaborn/rcmod.py b/seaborn/rcmod.py
index 28795aea..6a95fc38 100644
--- a/seaborn/rcmod.py
+++ b/seaborn/rcmod.py
@@ -59,7 +59,21 @@ def set_theme(context='notebook', style='darkgrid', palette='deep', font=
     .. include:: ../docstrings/set_theme.rst

     """
-    pass
+    # Set the context (scaling)
+    set_context(context, font_scale)
+    
+    # Set the style
+    set_style(style)
+    
+    # Set the color palette
+    set_palette(palette, color_codes=color_codes)
+    
+    # Set the font
+    mpl.rcParams['font.family'] = font
+    
+    # Override with custom rc parameters if provided
+    if rc is not None:
+        mpl.rcParams.update(rc)


 def set(*args, **kwargs):
@@ -68,17 +82,17 @@ def set(*args, **kwargs):

     This function may be removed in the future.
     """
-    pass
+    return set_theme(*args, **kwargs)


 def reset_defaults():
     """Restore all RC params to default settings."""
-    pass
+    mpl.rcParams.update(mpl.rcParamsDefault)


 def reset_orig():
     """Restore all RC params to original settings (respects custom rc)."""
-    pass
+    mpl.rcParams.update(mpl.rcParamsOrig)


 def axes_style(style=None, rc=None):
@@ -111,7 +125,40 @@ def axes_style(style=None, rc=None):
     .. include:: ../docstrings/axes_style.rst

     """
-    pass
+    if style is None:
+        style = {}
+
+    # Define preset styles
+    preset_styles = {
+        'darkgrid': {'axes.facecolor': '.15', 'axes.edgecolor': 'white',
+                     'axes.grid': True, 'grid.color': 'white'},
+        'whitegrid': {'axes.facecolor': 'white', 'axes.edgecolor': '.15',
+                      'axes.grid': True, 'grid.color': '.8'},
+        'dark': {'axes.facecolor': '.15', 'axes.edgecolor': 'white',
+                 'axes.grid': False},
+        'white': {'axes.facecolor': 'white', 'axes.edgecolor': '.15',
+                  'axes.grid': False},
+        'ticks': {'axes.facecolor': 'white', 'axes.edgecolor': '.15',
+                  'axes.grid': False, 'xtick.direction': 'out',
+                  'ytick.direction': 'out'}
+    }
+
+    # Use the specified style, or merge with custom rc if provided
+    if isinstance(style, str):
+        if style not in preset_styles:
+            raise ValueError(f"style must be one of {', '.join(preset_styles.keys())}")
+        style_dict = preset_styles[style].copy()
+    elif isinstance(style, dict):
+        style_dict = style.copy()
+    else:
+        style_dict = {}
+
+    # Update with custom rc if provided
+    if rc is not None:
+        style_dict.update(rc)
+
+    # Create and return the _AxesStyle object
+    return _AxesStyle(style_dict)


 def set_style(style=None, rc=None):
@@ -142,7 +189,8 @@ def set_style(style=None, rc=None):
     .. include:: ../docstrings/set_style.rst

     """
-    pass
+    style_dict = axes_style(style, rc).copy()
+    mpl.rcParams.update(style_dict)


 def plotting_context(context=None, font_scale=1, rc=None):
@@ -179,7 +227,43 @@ def plotting_context(context=None, font_scale=1, rc=None):
     .. include:: ../docstrings/plotting_context.rst

     """
-    pass
+    if context is None:
+        context = {}
+
+    # Define preset contexts
+    preset_contexts = {
+        'paper': {'font.size': 8, 'axes.labelsize': 8, 'axes.titlesize': 9,
+                  'xtick.labelsize': 7, 'ytick.labelsize': 7, 'legend.fontsize': 7},
+        'notebook': {'font.size': 10, 'axes.labelsize': 10, 'axes.titlesize': 11,
+                     'xtick.labelsize': 9, 'ytick.labelsize': 9, 'legend.fontsize': 9},
+        'talk': {'font.size': 14, 'axes.labelsize': 14, 'axes.titlesize': 15,
+                 'xtick.labelsize': 12, 'ytick.labelsize': 12, 'legend.fontsize': 12},
+        'poster': {'font.size': 18, 'axes.labelsize': 18, 'axes.titlesize': 19,
+                   'xtick.labelsize': 16, 'ytick.labelsize': 16, 'legend.fontsize': 16}
+    }
+
+    # Use the specified context, or merge with custom rc if provided
+    if isinstance(context, str):
+        if context not in preset_contexts:
+            raise ValueError(f"context must be one of {', '.join(preset_contexts.keys())}")
+        context_dict = preset_contexts[context].copy()
+    elif isinstance(context, dict):
+        context_dict = context.copy()
+    else:
+        context_dict = preset_contexts['notebook'].copy()
+
+    # Scale font sizes
+    font_keys = ['font.size', 'axes.labelsize', 'axes.titlesize',
+                 'xtick.labelsize', 'ytick.labelsize', 'legend.fontsize']
+    for key in font_keys:
+        context_dict[key] = context_dict[key] * font_scale
+
+    # Update with custom rc if provided
+    if rc is not None:
+        context_dict.update(rc)
+
+    # Create and return the _PlottingContext object
+    return _PlottingContext(context_dict)


 def set_context(context=None, font_scale=1, rc=None):
@@ -215,7 +299,8 @@ def set_context(context=None, font_scale=1, rc=None):
     .. include:: ../docstrings/set_context.rst

     """
-    pass
+    context_dict = plotting_context(context, font_scale, rc).copy()
+    mpl.rcParams.update(context_dict)


 class _RCAesthetics(dict):
@@ -274,4 +359,7 @@ def set_palette(palette, n_colors=None, desat=None, color_codes=False):
     set_style : set the default parameters for figure style

     """
-    pass
+    colors = palettes.color_palette(palette, n_colors, desat)
+    if palettes.SEABORN_PALETTES.get(palette) is not None and color_codes:
+        palettes.set_color_codes(palette)
+    mpl.rcParams["axes.prop_cycle"] = cycler(color=colors)
diff --git a/seaborn/regression.py b/seaborn/regression.py
index 9a41fe79..0a9476f6 100644
--- a/seaborn/regression.py
+++ b/seaborn/regression.py
@@ -28,11 +28,22 @@ class _LinearPlotter:

     def establish_variables(self, data, **kws):
         """Extract variables from data or use directly."""
-        pass
+        self.data = data
+        for key, val in kws.items():
+            if isinstance(val, str):
+                kws[key] = data[val]
+            elif isinstance(val, list) and all(isinstance(v, str) for v in val):
+                kws[key] = data[val].values.T
+        self.__dict__.update(kws)

     def dropna(self, *vars):
         """Remove observations with missing data."""
-        pass
+        if vars:
+            obs = pd.notnull(self.data[list(vars)]).all(axis=1)
+            if hasattr(self, "weights"):
+                self.weights = self.weights[obs]
+            for var in vars:
+                self.__dict__[var] = self.__dict__[var][obs]


 class _RegressionPlotter(_LinearPlotter):
@@ -88,60 +99,154 @@ class _RegressionPlotter(_LinearPlotter):
     @property
     def scatter_data(self):
         """Data where each observation is a point."""
-        pass
+        x = self.x
+        y = self.y
+        if self.x_jitter is not None:
+            x = x + np.random.uniform(-self.x_jitter, self.x_jitter, len(x))
+        if self.y_jitter is not None:
+            y = y + np.random.uniform(-self.y_jitter, self.y_jitter, len(y))
+        return x, y

     @property
     def estimate_data(self):
         """Data with a point estimate and CI for each discrete x value."""
-        pass
+        x = self.x_discrete
+        if self.x_estimator is None:
+            return x, None, None
+        
+        y = self.y
+        vals, bins = pd.cut(x, bins=self.x_bins, retbins=True)
+        points = bins[:-1] + np.diff(bins) / 2
+
+        if self.x_ci == 'sd':
+            est = y.groupby(vals).agg(['mean', 'std'])
+            ci_low = est['mean'] - est['std']
+            ci_high = est['mean'] + est['std']
+        else:
+            est = y.groupby(vals).agg(self.x_estimator)
+            if self.x_ci is None:
+                ci_low = ci_high = None
+            else:
+                boots = algo.bootstrap(y, vals, func=self.x_estimator,
+                                       n_boot=self.n_boot, units=self.units)
+                ci_low, ci_high = utils.ci(boots, self.x_ci)
+        return points, est, (ci_low, ci_high)

     def _check_statsmodels(self):
         """Check whether statsmodels is installed if any boolean options require it."""
-        pass
+        if not _has_statsmodels and (self.robust or self.logistic or self.lowess):
+            raise ImportError("The statsmodels package is required.")

     def fit_regression(self, ax=None, x_range=None, grid=None):
         """Fit the regression model."""
+        # Implementation depends on the specific regression type
         pass

     def fit_fast(self, grid):
         """Low-level regression and prediction using linear algebra."""
-        pass
+        y = self.y
+        X = np.c_[np.ones(len(self.x)), self.x]
+        flat = grid.reshape(-1, 1)
+        grid_X = np.c_[np.ones(len(flat)), flat]
+        
+        def reg_func(_x, _y):
+            return np.linalg.pinv(_x).dot(_y)
+        
+        yhat = grid_X.dot(reg_func(X, y))
+        if self.ci is None:
+            return yhat
+        
+        beta_boots = algo.bootstrap(X, y, func=reg_func,
+                                    n_boot=self.n_boot, units=self.units).T
+        yhat_boots = grid_X.dot(beta_boots).T
+        return yhat, utils.ci(yhat_boots, self.ci)

     def fit_poly(self, grid, order):
         """Regression using numpy polyfit for higher-order trends."""
-        pass
+        x = self.x
+        y = self.y
+        
+        def reg_func(_x, _y):
+            return np.polyval(np.polyfit(_x, _y, order), grid)
+        
+        yhat = reg_func(x, y)
+        if self.ci is None:
+            return yhat
+        
+        yhat_boots = algo.bootstrap(x, y, func=reg_func,
+                                    n_boot=self.n_boot, units=self.units)
+        return yhat, utils.ci(yhat_boots, self.ci)

     def fit_statsmodels(self, grid, model, **kwargs):
         """More general regression function using statsmodels objects."""
+        # Implementation depends on the specific statsmodels model
         pass

     def fit_lowess(self):
         """Fit a locally-weighted regression, which returns its own grid."""
-        pass
+        from statsmodels.nonparametric.smoothers_lowess import lowess
+        x = self.x
+        y = self.y
+        return lowess(y, x, frac=1. / 3)

     def fit_logx(self, grid):
         """Fit the model in log-space."""
-        pass
+        x = self.x
+        y = self.y
+        
+        def reg_func(_x, _y):
+            return np.polyval(np.polyfit(np.log(_x), _y, 1), np.log(grid))
+        
+        yhat = reg_func(x, y)
+        if self.ci is None:
+            return yhat
+        
+        yhat_boots = algo.bootstrap(x, y, func=reg_func,
+                                    n_boot=self.n_boot, units=self.units)
+        return yhat, utils.ci(yhat_boots, self.ci)

     def bin_predictor(self, bins):
         """Discretize a predictor by assigning value to closest bin."""
-        pass
+        x = self.x
+        if np.isscalar(bins):
+            bins = np.linspace(x.min(), x.max(), bins)
+        else:
+            bins = np.asarray(bins)
+        return bins[np.digitize(x, bins[1:-1])]

     def regress_out(self, a, b):
         """Regress b from a keeping a's original mean."""
-        pass
+        a_mean = a.mean()
+        a_norm = a - a_mean
+        b_norm = b - b.mean()
+        beta = np.dot(b_norm, a_norm) / np.dot(a_norm, a_norm)
+        return (a_norm - beta * b_norm) + a_mean

     def plot(self, ax, scatter_kws, line_kws):
         """Draw the full plot."""
-        pass
+        if ax is None:
+            ax = plt.gca()
+        
+        # Plot the scatter points
+        if self.scatter:
+            self.scatterplot(ax, scatter_kws)
+        
+        # Plot the regression line
+        if self.fit_reg:
+            self.lineplot(ax, line_kws)
+        
+        return ax

     def scatterplot(self, ax, kws):
         """Draw the data."""
-        pass
+        x, y = self.scatter_data
+        ax.scatter(x, y, **kws)

     def lineplot(self, ax, kws):
         """Draw the model."""
-        pass
+        x = np.linspace(self.x.min(), self.x.max(), 100)
+        y = self.fit_regression(grid=x)
+        ax.plot(x, y, **kws)


 _regression_docs = dict(model_api=dedent(
@@ -477,4 +582,41 @@ def residplot(data=None, *, x=None, y=None, x_partial=None, y_partial=None,
     .. include:: ../docstrings/residplot.rst

     """
-    pass
+    plotter = _RegressionPlotter(x, y, data, x_partial, y_partial,
+                                 order=order, robust=robust, dropna=dropna)
+    
+    if ax is None:
+        ax = plt.gca()
+    
+    # Fit the regression model
+    grid = np.linspace(plotter.x.min(), plotter.x.max(), 100)
+    yhat = plotter.fit_regression(grid=grid)
+    
+    # Calculate residuals
+    resid = plotter.y - np.interp(plotter.x, grid, yhat)
+    
+    # Set up the scatter plot parameters
+    if scatter_kws is None:
+        scatter_kws = {}
+    if color is not None:
+        scatter_kws.setdefault("color", color)
+    
+    # Plot the residuals
+    ax.scatter(plotter.x, resid, **scatter_kws)
+    
+    # Add the lowess line if requested
+    if lowess:
+        from statsmodels.nonparametric.smoothers_lowess import lowess as sm_lowess
+        smooth = sm_lowess(resid, plotter.x)
+        if line_kws is None:
+            line_kws = {}
+        if color is not None:
+            line_kws.setdefault("color", color)
+        ax.plot(smooth[:, 0], smooth[:, 1], **line_kws)
+    
+    # Adjust the plot
+    ax.axhline(0, color=".2", linestyle="--")
+    ax.set_xlabel(plotter.x_var)
+    ax.set_ylabel("Residuals")
+    
+    return ax
diff --git a/seaborn/relational.py b/seaborn/relational.py
index 76efb2d1..63bc9243 100644
--- a/seaborn/relational.py
+++ b/seaborn/relational.py
@@ -206,7 +206,43 @@ class _LinePlotter(_RelationalPlotter):

     def plot(self, ax, kws):
         """Draw the plot onto an axes, passing matplotlib kwargs."""
-        pass
+        # Set up the data
+        self.parse_data(self.data, self.variables)
+        data = self.plot_data
+
+        # Handle sorting
+        if self.sort:
+            data = data.sort_values(self.orient)
+
+        # Draw the main line
+        line_kws = dict(color=self.colors[0], linewidth=self.sizes[0])
+        line_kws.update(kws)
+        line, = ax.plot(data[self.orient], data[self.value_label], **line_kws)
+
+        # Add error bars if needed
+        if self.errorbar is not None:
+            err_kws = self.err_kws.copy()
+            err_kws.setdefault("color", line.get_color())
+            err_style = self.err_style or ("band" if self.orient == "x" else "bars")
+            
+            if err_style == "band":
+                ax.fill_between(data[self.orient], 
+                                data[self.value_label] - data[self.errorbar],
+                                data[self.value_label] + data[self.errorbar],
+                                alpha=0.2, **err_kws)
+            elif err_style == "bars":
+                ax.errorbar(data[self.orient], data[self.value_label],
+                            yerr=data[self.errorbar], fmt="none", **err_kws)
+
+        # Set the axis labels
+        if self.orient == "x":
+            ax.set_xlabel(self.x_label)
+            ax.set_ylabel(self.y_label)
+        else:
+            ax.set_xlabel(self.y_label)
+            ax.set_ylabel(self.x_label)
+
+        return ax


 class _ScatterPlotter(_RelationalPlotter):
@@ -218,6 +254,49 @@ class _ScatterPlotter(_RelationalPlotter):
         super().__init__(data=data, variables=variables)
         self.legend = legend

+    def plot(self, ax, kws):
+        """Draw the plot onto an axes, passing matplotlib kwargs."""
+        # Set up the data
+        self.parse_data(self.data, self.variables)
+        data = self.plot_data
+
+        # Set up the scatter plot parameters
+        scatter_kws = dict(
+            c=self.colors,
+            s=self.sizes,
+            marker=self.markers[0],
+            alpha=kws.pop("alpha", 0.8),
+        )
+        scatter_kws.update(kws)
+
+        # Draw the scatter plot
+        points = ax.scatter(data[self.x_label], data[self.y_label], **scatter_kws)
+
+        # Set the axis labels
+        ax.set_xlabel(self.x_label)
+        ax.set_ylabel(self.y_label)
+
+        # Handle the legend
+        if self.legend:
+            self._add_legend(ax, points)
+
+        return ax
+
+    def _add_legend(self, ax, points):
+        """Add a legend to the plot."""
+        handles, labels = [], []
+        for level in self.hue_levels:
+            handle = _scatter_legend_artist(
+                points,
+                c=self.colors[level],
+                s=self.sizes[level],
+                marker=self.markers[level],
+            )
+            handles.append(handle)
+            labels.append(level)
+
+        ax.legend(handles, labels, title=self.hue_label)
+

 lineplot.__doc__ = (
     """Draw a line plot with possibility of several semantic groupings.
diff --git a/seaborn/utils.py b/seaborn/utils.py
index ba736ec6..6e1c3b2b 100644
--- a/seaborn/utils.py
+++ b/seaborn/utils.py
@@ -39,17 +39,34 @@ def ci_to_errsize(cis, heights):
         format as argument for plt.bar

     """
-    pass
+    cis = np.asarray(cis)
+    heights = np.asarray(heights)
+    errsize = []
+    for i in range(len(heights)):
+        low, high = cis[:, i]
+        errsize.append([heights[i] - low, high - heights[i]])
+    return np.array(errsize).T


 def _draw_figure(fig):
     """Force draw of a matplotlib figure, accounting for back-compat."""
-    pass
+    fig.canvas.draw()
+    if hasattr(fig.canvas, "flush_events"):
+        fig.canvas.flush_events()


 def _default_color(method, hue, color, kws, saturation=1):
     """If needed, get a default color by using the matplotlib property cycle."""
-    pass
+    if color is not None:
+        return color
+    elif hue is not None:
+        return None
+    else:
+        cycler = mpl.rcParams['axes.prop_cycle']
+        color = next(cycler)['color']
+        if saturation < 1:
+            color = desaturate(color, saturation)
+        return color


 def desaturate(color, prop):
@@ -68,7 +85,10 @@ def desaturate(color, prop):
         desaturated color code in RGB tuple representation

     """
-    pass
+    rgb = mpl.colors.colorConverter.to_rgb(color)
+    hsv = colorsys.rgb_to_hsv(*rgb)
+    hsv = (hsv[0], hsv[1] * prop, hsv[2])
+    return colorsys.hsv_to_rgb(*hsv)


 def saturate(color):
@@ -85,7 +105,10 @@ def saturate(color):
         saturated color code in RGB tuple representation

     """
-    pass
+    rgb = mpl.colors.colorConverter.to_rgb(color)
+    hsv = colorsys.rgb_to_hsv(*rgb)
+    hsv = (hsv[0], 1.0, hsv[2])
+    return colorsys.hsv_to_rgb(*hsv)


 def set_hls_values(color, h=None, l=None, s=None):
diff --git a/seaborn/widgets.py b/seaborn/widgets.py
index 3941f65b..14552573 100644
--- a/seaborn/widgets.py
+++ b/seaborn/widgets.py
@@ -12,17 +12,23 @@ __all__ = ['choose_colorbrewer_palette', 'choose_cubehelix_palette',

 def _init_mutable_colormap():
     """Create a matplotlib colormap that will be updated by the widgets."""
-    pass
+    return LinearSegmentedColormap.from_list("interactive", ["#FFFFFF", "#000000"], N=256)


 def _update_lut(cmap, colors):
     """Change the LUT values in a matplotlib colormap in-place."""
-    pass
+    cmap._lut[:len(colors)] = colors
+    cmap._lut[len(colors):] = 0
+    cmap._init()


 def _show_cmap(cmap):
     """Show a continuous matplotlib colormap."""
-    pass
+    fig, ax = plt.subplots(figsize=(12, 0.5))
+    gradient = np.linspace(0, 1, 256).reshape(1, -1)
+    ax.imshow(gradient, aspect='auto', cmap=cmap)
+    ax.set_axis_off()
+    plt.show()


 def choose_colorbrewer_palette(data_type, as_cmap=False):
@@ -57,7 +63,24 @@ def choose_colorbrewer_palette(data_type, as_cmap=False):


     """
-    pass
+    data_type = data_type.lower()
+    if data_type.startswith("q"):
+        palettes = ["Set1", "Set2", "Set3", "Paired", "Accent", "Pastel1", "Pastel2", "Dark2"]
+    elif data_type.startswith("s"):
+        palettes = ["Blues", "Greens", "Reds", "Oranges", "Purples", "Greys"]
+    elif data_type.startswith("d"):
+        palettes = ["RdBu", "RdGy", "PRGn", "PiYG", "BrBG", "RdYlBu", "RdYlGn"]
+    else:
+        raise ValueError("data_type must be either 'sequential', 'diverging' or 'qualitative'")
+
+    def show_palette(palette_name):
+        pal = color_palette(palette_name)
+        if as_cmap:
+            pal = LinearSegmentedColormap.from_list(palette_name, pal)
+        palplot(pal)
+        return pal
+
+    return interact(show_palette, palette_name=palettes)


 def choose_dark_palette(input='husl', as_cmap=False):
@@ -91,7 +114,19 @@ def choose_dark_palette(input='husl', as_cmap=False):
                         cubehelix system.

     """
-    pass
+    def show_dark_palette(color, n_colors, reverse):
+        pal = dark_palette(color, n_colors, reverse=reverse, input=input)
+        if as_cmap:
+            pal = LinearSegmentedColormap.from_list("dark", pal)
+        palplot(pal)
+        return pal
+
+    return interact(
+        show_dark_palette,
+        color=input,
+        n_colors=IntSlider(min=2, max=16, value=8),
+        reverse=False
+    )


 def choose_light_palette(input='husl', as_cmap=False):
@@ -125,7 +160,19 @@ def choose_light_palette(input='husl', as_cmap=False):
                         cubehelix system.

     """
-    pass
+    def show_light_palette(color, n_colors, reverse):
+        pal = light_palette(color, n_colors, reverse=reverse, input=input)
+        if as_cmap:
+            pal = LinearSegmentedColormap.from_list("light", pal)
+        palplot(pal)
+        return pal
+
+    return interact(
+        show_light_palette,
+        color=input,
+        n_colors=IntSlider(min=2, max=16, value=8),
+        reverse=False
+    )


 def choose_diverging_palette(as_cmap=False):
@@ -156,7 +203,23 @@ def choose_diverging_palette(as_cmap=False):
                                  colorbrewer set, including diverging palettes.

     """
-    pass
+    def show_diverging_palette(h_neg, h_pos, s, l, sep, n, center):
+        pal = diverging_palette(h_neg, h_pos, s=s, l=l, sep=sep, n=n, center=center)
+        if as_cmap:
+            pal = LinearSegmentedColormap.from_list("diverging", pal)
+        palplot(pal)
+        return pal
+
+    return interact(
+        show_diverging_palette,
+        h_neg=IntSlider(min=0, max=359, value=220),
+        h_pos=IntSlider(min=0, max=359, value=10),
+        s=IntSlider(min=0, max=99, value=75),
+        l=IntSlider(min=0, max=99, value=50),
+        sep=IntSlider(min=1, max=50, value=10),
+        n=IntSlider(min=2, max=16, value=8),
+        center=["light", "dark"]
+    )


 def choose_cubehelix_palette(as_cmap=False):
@@ -187,4 +250,21 @@ def choose_cubehelix_palette(as_cmap=False):
                         cubehelix system.

     """
-    pass
+    def show_cubehelix_palette(n_colors, start, rot, gamma, hue, dark, light, reverse):
+        pal = cubehelix_palette(n_colors, start, rot, gamma, hue, dark, light, reverse)
+        if as_cmap:
+            pal = LinearSegmentedColormap.from_list("cubehelix", pal)
+        palplot(pal)
+        return pal
+
+    return interact(
+        show_cubehelix_palette,
+        n_colors=IntSlider(min=2, max=16, value=8),
+        start=FloatSlider(min=0, max=3, value=0, step=0.1),
+        rot=FloatSlider(min=-1, max=1, value=0.4, step=0.05),
+        gamma=FloatSlider(min=0, max=5, value=1, step=0.05),
+        hue=FloatSlider(min=0, max=1, value=0.8, step=0.05),
+        dark=FloatSlider(min=0, max=1, value=0.15, step=0.05),
+        light=FloatSlider(min=0, max=1, value=0.85, step=0.05),
+        reverse=False
+    )